Netflix <- read.csv("Netflix.csv")
Netflix_Actor <- Netflix %>%
separate_rows(cast, sep = ", ") %>%
drop_na(cast) %>%
rename(actor = cast)
head(Netflix_Actor)
## # A tibble: 6 × 12
## show_id type title director actor country date_added release_year rating
## <int> <chr> <chr> <chr> <chr> <chr> <chr> <int> <chr>
## 1 81145628 Movie Norm of … Richard… Alan… United… September… 2019 TV-PG
## 2 81145628 Movie Norm of … Richard… Andr… United… September… 2019 TV-PG
## 3 81145628 Movie Norm of … Richard… Bria… United… September… 2019 TV-PG
## 4 81145628 Movie Norm of … Richard… Cole… United… September… 2019 TV-PG
## 5 81145628 Movie Norm of … Richard… Jenn… United… September… 2019 TV-PG
## 6 81145628 Movie Norm of … Richard… Jona… United… September… 2019 TV-PG
## # ℹ 3 more variables: duration <chr>, listed_in <chr>, description <chr>
Top_Actors <- Netflix_Actor %>%
select(type, actor) %>%
filter(type == "TV Show") %>%
group_by(actor) %>%
summarise(appearances = n()) %>%
arrange(desc(appearances)) %>%
head(6)
Top_Actors
## # A tibble: 6 × 2
## actor appearances
## <chr> <int>
## 1 "" 210
## 2 "Takahiro Sakurai" 18
## 3 "Yuki Kaji" 16
## 4 "Daisuke Ono" 14
## 5 "David Attenborough" 14
## 6 "Ashleigh Ball" 12
