data_mahasiswa <- read.csv("df_mahasiswa.csv")
head(data_mahasiswa)
##   X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1       MHS001             L                    4                   1
## 2 2       MHS002             P                    4                   2
## 3 3       MHS003             P                    2                   6
## 4 4       MHS004             P                    5                   3
## 5 5       MHS005             L                    3                   2
## 6 6       MHS006             L                    3                   7
##   motivasi_belajar  ipk
## 1               82 3.12
## 2               73 3.45
## 3               71 3.07
## 4               98 3.43
## 5               81 2.83
## 6               61 3.10
str(data_mahasiswa)
## 'data.frame':    55 obs. of  7 variables:
##  $ X                   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ id_mahasiswa        : chr  "MHS001" "MHS002" "MHS003" "MHS004" ...
##  $ jenis_kelamin       : chr  "L" "P" "P" "P" ...
##  $ jam_belajar_per_hari: int  4 4 2 5 3 3 1 3 2 1 ...
##  $ frekuensi_login_lms : int  1 2 6 3 2 7 7 4 6 5 ...
##  $ motivasi_belajar    : int  82 73 71 98 81 61 44 69 44 46 ...
##  $ ipk                 : num  3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
is.na(data_mahasiswa)
##           X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
##  [1,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [2,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [3,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [4,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [5,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [6,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [7,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [8,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [9,] FALSE        FALSE         FALSE                FALSE               FALSE
## [10,] FALSE        FALSE         FALSE                FALSE               FALSE
## [11,] FALSE        FALSE         FALSE                FALSE               FALSE
## [12,] FALSE        FALSE         FALSE                FALSE               FALSE
## [13,] FALSE        FALSE         FALSE                FALSE               FALSE
## [14,] FALSE        FALSE         FALSE                FALSE               FALSE
## [15,] FALSE        FALSE         FALSE                FALSE               FALSE
## [16,] FALSE        FALSE         FALSE                FALSE               FALSE
## [17,] FALSE        FALSE         FALSE                FALSE               FALSE
## [18,] FALSE        FALSE         FALSE                FALSE               FALSE
## [19,] FALSE        FALSE         FALSE                FALSE               FALSE
## [20,] FALSE        FALSE         FALSE                FALSE               FALSE
## [21,] FALSE        FALSE         FALSE                FALSE               FALSE
## [22,] FALSE        FALSE         FALSE                FALSE               FALSE
## [23,] FALSE        FALSE         FALSE                FALSE               FALSE
## [24,] FALSE        FALSE         FALSE                FALSE               FALSE
## [25,] FALSE        FALSE         FALSE                FALSE               FALSE
## [26,] FALSE        FALSE         FALSE                FALSE               FALSE
## [27,] FALSE        FALSE         FALSE                FALSE               FALSE
## [28,] FALSE        FALSE         FALSE                FALSE               FALSE
## [29,] FALSE        FALSE         FALSE                FALSE               FALSE
## [30,] FALSE        FALSE         FALSE                FALSE               FALSE
## [31,] FALSE        FALSE         FALSE                FALSE               FALSE
## [32,] FALSE        FALSE         FALSE                FALSE               FALSE
## [33,] FALSE        FALSE         FALSE                FALSE               FALSE
## [34,] FALSE        FALSE         FALSE                FALSE               FALSE
## [35,] FALSE        FALSE         FALSE                FALSE               FALSE
## [36,] FALSE        FALSE         FALSE                FALSE               FALSE
## [37,] FALSE        FALSE         FALSE                FALSE               FALSE
## [38,] FALSE        FALSE         FALSE                FALSE               FALSE
## [39,] FALSE        FALSE         FALSE                FALSE               FALSE
## [40,] FALSE        FALSE         FALSE                FALSE               FALSE
## [41,] FALSE        FALSE         FALSE                FALSE               FALSE
## [42,] FALSE        FALSE         FALSE                FALSE               FALSE
## [43,] FALSE        FALSE         FALSE                FALSE               FALSE
## [44,] FALSE        FALSE         FALSE                FALSE               FALSE
## [45,] FALSE        FALSE         FALSE                FALSE               FALSE
## [46,] FALSE        FALSE         FALSE                FALSE               FALSE
## [47,] FALSE        FALSE         FALSE                FALSE               FALSE
## [48,] FALSE        FALSE         FALSE                FALSE               FALSE
## [49,] FALSE        FALSE         FALSE                FALSE               FALSE
## [50,] FALSE        FALSE         FALSE                FALSE               FALSE
## [51,] FALSE        FALSE         FALSE                FALSE               FALSE
## [52,] FALSE        FALSE         FALSE                FALSE               FALSE
## [53,] FALSE        FALSE         FALSE                FALSE               FALSE
## [54,] FALSE        FALSE         FALSE                FALSE               FALSE
## [55,] FALSE        FALSE         FALSE                FALSE               FALSE
##       motivasi_belajar   ipk
##  [1,]            FALSE FALSE
##  [2,]            FALSE FALSE
##  [3,]            FALSE FALSE
##  [4,]            FALSE FALSE
##  [5,]            FALSE FALSE
##  [6,]            FALSE FALSE
##  [7,]            FALSE FALSE
##  [8,]            FALSE FALSE
##  [9,]            FALSE FALSE
## [10,]            FALSE FALSE
## [11,]            FALSE FALSE
## [12,]            FALSE FALSE
## [13,]            FALSE FALSE
## [14,]            FALSE FALSE
## [15,]            FALSE FALSE
## [16,]            FALSE FALSE
## [17,]            FALSE FALSE
## [18,]            FALSE FALSE
## [19,]            FALSE FALSE
## [20,]            FALSE FALSE
## [21,]            FALSE FALSE
## [22,]            FALSE FALSE
## [23,]            FALSE FALSE
## [24,]            FALSE FALSE
## [25,]            FALSE FALSE
## [26,]            FALSE FALSE
## [27,]            FALSE FALSE
## [28,]            FALSE FALSE
## [29,]            FALSE FALSE
## [30,]            FALSE FALSE
## [31,]            FALSE FALSE
## [32,]            FALSE FALSE
## [33,]            FALSE FALSE
## [34,]            FALSE FALSE
## [35,]            FALSE FALSE
## [36,]            FALSE FALSE
## [37,]            FALSE FALSE
## [38,]            FALSE FALSE
## [39,]            FALSE FALSE
## [40,]            FALSE FALSE
## [41,]            FALSE FALSE
## [42,]            FALSE FALSE
## [43,]            FALSE FALSE
## [44,]            FALSE FALSE
## [45,]            FALSE FALSE
## [46,]            FALSE FALSE
## [47,]            FALSE FALSE
## [48,]            FALSE FALSE
## [49,]            FALSE FALSE
## [50,]            FALSE FALSE
## [51,]            FALSE FALSE
## [52,]            FALSE FALSE
## [53,]            FALSE FALSE
## [54,]            FALSE FALSE
## [55,]            FALSE FALSE
table(data_mahasiswa$jenis_kelamin)
## 
##  L  P 
## 32 23
aggregate(ipk ~ jenis_kelamin, data=data_mahasiswa, mean)
##   jenis_kelamin      ipk
## 1             L 3.158125
## 2             P 3.176957
data_mahasiswa[order(-data_mahasiswa$motivasi_belajar), c("id_mahasiswa", "motivasi_belajar")]
##    id_mahasiswa motivasi_belajar
## 54       MHS054              100
## 4        MHS004               98
## 45       MHS045               96
## 18       MHS018               92
## 48       MHS048               92
## 51       MHS051               92
## 35       MHS035               91
## 43       MHS043               91
## 16       MHS016               90
## 38       MHS038               90
## 41       MHS041               90
## 26       MHS026               89
## 52       MHS052               88
## 30       MHS030               87
## 34       MHS034               87
## 19       MHS019               84
## 23       MHS023               83
## 1        MHS001               82
## 47       MHS047               82
## 5        MHS005               81
## 14       MHS014               81
## 24       MHS024               81
## 40       MHS040               80
## 53       MHS053               80
## 2        MHS002               73
## 20       MHS020               73
## 42       MHS042               73
## 49       MHS049               73
## 22       MHS022               72
## 3        MHS003               71
## 31       MHS031               71
## 55       MHS055               71
## 25       MHS025               70
## 8        MHS008               69
## 37       MHS037               68
## 36       MHS036               66
## 44       MHS044               63
## 6        MHS006               61
## 13       MHS013               59
## 27       MHS027               59
## 50       MHS050               57
## 11       MHS011               56
## 28       MHS028               53
## 17       MHS017               52
## 39       MHS039               52
## 29       MHS029               48
## 21       MHS021               47
## 10       MHS010               46
## 33       MHS033               46
## 7        MHS007               44
## 9        MHS009               44
## 15       MHS015               44
## 46       MHS046               43
## 32       MHS032               39
## 12       MHS012               35
data_mahasiswa[order(-data_mahasiswa$frekuensi_login_lms), c("id_mahasiswa", "frekuensi_login_lms", "ipk")]
##    id_mahasiswa frekuensi_login_lms  ipk
## 6        MHS006                   7 3.10
## 7        MHS007                   7 2.98
## 17       MHS017                   7 3.06
## 18       MHS018                   7 3.89
## 22       MHS022                   7 3.69
## 31       MHS031                   7 3.22
## 33       MHS033                   7 3.11
## 41       MHS041                   7 3.73
## 44       MHS044                   7 3.15
## 55       MHS055                   7 3.21
## 3        MHS003                   6 3.07
## 9        MHS009                   6 2.82
## 13       MHS013                   6 3.11
## 21       MHS021                   6 2.96
## 26       MHS026                   6 3.32
## 28       MHS028                   6 3.14
## 37       MHS037                   6 3.67
## 42       MHS042                   6 3.05
## 51       MHS051                   6 3.65
## 10       MHS010                   5 2.93
## 43       MHS043                   5 3.29
## 47       MHS047                   5 3.13
## 49       MHS049                   5 3.22
## 8        MHS008                   4 3.08
## 23       MHS023                   4 3.54
## 24       MHS024                   4 3.61
## 34       MHS034                   4 3.56
## 48       MHS048                   4 3.70
## 50       MHS050                   4 3.05
## 52       MHS052                   4 3.30
## 53       MHS053                   4 3.29
## 54       MHS054                   4 3.41
## 4        MHS004                   3 3.43
## 27       MHS027                   3 2.94
## 30       MHS030                   3 3.40
## 46       MHS046                   3 2.49
## 2        MHS002                   2 3.45
## 5        MHS005                   2 2.83
## 12       MHS012                   2 2.71
## 14       MHS014                   2 3.31
## 15       MHS015                   2 2.90
## 19       MHS019                   2 3.09
## 29       MHS029                   2 2.89
## 32       MHS032                   2 2.66
## 40       MHS040                   2 3.17
## 45       MHS045                   2 3.33
## 1        MHS001                   1 3.12
## 11       MHS011                   1 2.64
## 16       MHS016                   1 3.46
## 20       MHS020                   1 2.73
## 25       MHS025                   1 2.65
## 35       MHS035                   1 3.13
## 36       MHS036                   1 2.95
## 38       MHS038                   1 3.29
## 39       MHS039                   1 2.52
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
data_mahasiswa %>%
  mutate(jam_belajar_per_hari = ifelse (jam_belajar_per_hari >=4, ">=4 jam", "<4 jam")) %>%
  group_by(jam_belajar_per_hari) %>%
  summarise(ipk = mean(ipk, na.rm = TRUE))
## # A tibble: 2 × 2
##   jam_belajar_per_hari   ipk
##   <chr>                <dbl>
## 1 <4 jam                2.94
## 2 >=4 jam               3.41
mahasiswa_ipk_tinggi <- data_mahasiswa %>%
  arrange(desc(ipk)) %>%
  slice(1)

id_tertinggi <- mahasiswa_ipk_tinggi$id_mahasiswa
motivasi_nilai <- mahasiswa_ipk_tinggi$motivasi_belajar
ipk_nilai <- mahasiswa_ipk_tinggi
mahasiswa_ipk_tinggi
##    X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 18       MHS018             L                    5                   7
##   motivasi_belajar  ipk
## 1               92 3.89
cerdas <- data_mahasiswa %>%
  filter(ipk >= 3.5) %>%
  filter(motivasi_belajar >=85) %>%
  select(jenis_kelamin, motivasi_belajar, ipk) %>%
  group_by(jenis_kelamin) %>%
  summarise(sum=n())
cerdas
## # A tibble: 2 × 2
##   jenis_kelamin   sum
##   <chr>         <int>
## 1 L                 4
## 2 P                 1