R Markdown
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df_mahasiswa <- read.csv("df_mahasiswa.csv")
head(df_mahasiswa)
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1 MHS001 L 4 1
## 2 2 MHS002 P 4 2
## 3 3 MHS003 P 2 6
## 4 4 MHS004 P 5 3
## 5 5 MHS005 L 3 2
## 6 6 MHS006 L 3 7
## motivasi_belajar ipk
## 1 82 3.12
## 2 73 3.45
## 3 71 3.07
## 4 98 3.43
## 5 81 2.83
## 6 61 3.10
str(df_mahasiswa)
## 'data.frame': 55 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id_mahasiswa : chr "MHS001" "MHS002" "MHS003" "MHS004" ...
## $ jenis_kelamin : chr "L" "P" "P" "P" ...
## $ jam_belajar_per_hari: int 4 4 2 5 3 3 1 3 2 1 ...
## $ frekuensi_login_lms : int 1 2 6 3 2 7 7 4 6 5 ...
## $ motivasi_belajar : int 82 73 71 98 81 61 44 69 44 46 ...
## $ ipk : num 3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
colSums(is.na(df_mahasiswa))
## X id_mahasiswa jenis_kelamin
## 0 0 0
## jam_belajar_per_hari frekuensi_login_lms motivasi_belajar
## 0 0 0
## ipk
## 0
table(df_mahasiswa$jenis_kelamin)
##
## L P
## 32 23
aggregate(ipk ~ jenis_kelamin, data = df_mahasiswa, mean)
## jenis_kelamin ipk
## 1 L 3.158125
## 2 P 3.176957
df_mahasiswa %>%
group_by(jenis_kelamin) %>%
summarize(rata_ipk=mean(ipk, na.rm = TRUE))
## # A tibble: 2 × 2
## jenis_kelamin rata_ipk
## <chr> <dbl>
## 1 L 3.16
## 2 P 3.18
df_mahasiswa[order(-df_mahasiswa$motivasi_belajar), c("id_mahasiswa", "motivasi_belajar")] |> head(5)
## id_mahasiswa motivasi_belajar
## 54 MHS054 100
## 4 MHS004 98
## 45 MHS045 96
## 18 MHS018 92
## 48 MHS048 92
library(dplyr)
df_mahasiswa %>%
filter(frekuensi_login_lms == max(frekuensi_login_lms, na.rm = TRUE)) %>%
select(id_mahasiswa, frekuensi_login_lms, ipk)
## id_mahasiswa frekuensi_login_lms ipk
## 1 MHS006 7 3.10
## 2 MHS007 7 2.98
## 3 MHS017 7 3.06
## 4 MHS018 7 3.89
## 5 MHS022 7 3.69
## 6 MHS031 7 3.22
## 7 MHS033 7 3.11
## 8 MHS041 7 3.73
## 9 MHS044 7 3.15
## 10 MHS055 7 3.21
df_mahasiswa %>%
mutate(jam_belajar_per_hari = ifelse(jam_belajar_per_hari >= 4, "≥4 Jam", "<4 Jam")) %>%
group_by(jam_belajar_per_hari) %>%
summarise(ipk = mean(ipk,na.rm=TRUE))
## # A tibble: 2 × 2
## jam_belajar_per_hari ipk
## <chr> <dbl>
## 1 <4 Jam 2.94
## 2 ≥4 Jam 3.41
q11 <- df_mahasiswa %>%
arrange(desc(ipk))%>%
slice(1)%>%
select(id_mahasiswa,ipk,motivasi_belajar)
q11
## id_mahasiswa ipk motivasi_belajar
## 1 MHS018 3.89 92
q22 <- df_mahasiswa %>%
filter(ipk>3.5,motivasi_belajar>85) %>%
group_by(jenis_kelamin)%>%
summarise(jumlah=n())
q22
## # A tibble: 2 × 2
## jenis_kelamin jumlah
## <chr> <int>
## 1 L 4
## 2 P 1