library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df_mahasiswa <- read.csv("df_mahasiswa.csv")
head(df_mahasiswa)
##   X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1       MHS001             L                    4                   1
## 2 2       MHS002             P                    4                   2
## 3 3       MHS003             P                    2                   6
## 4 4       MHS004             P                    5                   3
## 5 5       MHS005             L                    3                   2
## 6 6       MHS006             L                    3                   7
##   motivasi_belajar  ipk
## 1               82 3.12
## 2               73 3.45
## 3               71 3.07
## 4               98 3.43
## 5               81 2.83
## 6               61 3.10
head(df_mahasiswa)
##   X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1       MHS001             L                    4                   1
## 2 2       MHS002             P                    4                   2
## 3 3       MHS003             P                    2                   6
## 4 4       MHS004             P                    5                   3
## 5 5       MHS005             L                    3                   2
## 6 6       MHS006             L                    3                   7
##   motivasi_belajar  ipk
## 1               82 3.12
## 2               73 3.45
## 3               71 3.07
## 4               98 3.43
## 5               81 2.83
## 6               61 3.10
str(df_mahasiswa)
## 'data.frame':    55 obs. of  7 variables:
##  $ X                   : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ id_mahasiswa        : chr  "MHS001" "MHS002" "MHS003" "MHS004" ...
##  $ jenis_kelamin       : chr  "L" "P" "P" "P" ...
##  $ jam_belajar_per_hari: int  4 4 2 5 3 3 1 3 2 1 ...
##  $ frekuensi_login_lms : int  1 2 6 3 2 7 7 4 6 5 ...
##  $ motivasi_belajar    : int  82 73 71 98 81 61 44 69 44 46 ...
##  $ ipk                 : num  3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
is.na(df_mahasiswa)
##           X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
##  [1,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [2,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [3,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [4,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [5,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [6,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [7,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [8,] FALSE        FALSE         FALSE                FALSE               FALSE
##  [9,] FALSE        FALSE         FALSE                FALSE               FALSE
## [10,] FALSE        FALSE         FALSE                FALSE               FALSE
## [11,] FALSE        FALSE         FALSE                FALSE               FALSE
## [12,] FALSE        FALSE         FALSE                FALSE               FALSE
## [13,] FALSE        FALSE         FALSE                FALSE               FALSE
## [14,] FALSE        FALSE         FALSE                FALSE               FALSE
## [15,] FALSE        FALSE         FALSE                FALSE               FALSE
## [16,] FALSE        FALSE         FALSE                FALSE               FALSE
## [17,] FALSE        FALSE         FALSE                FALSE               FALSE
## [18,] FALSE        FALSE         FALSE                FALSE               FALSE
## [19,] FALSE        FALSE         FALSE                FALSE               FALSE
## [20,] FALSE        FALSE         FALSE                FALSE               FALSE
## [21,] FALSE        FALSE         FALSE                FALSE               FALSE
## [22,] FALSE        FALSE         FALSE                FALSE               FALSE
## [23,] FALSE        FALSE         FALSE                FALSE               FALSE
## [24,] FALSE        FALSE         FALSE                FALSE               FALSE
## [25,] FALSE        FALSE         FALSE                FALSE               FALSE
## [26,] FALSE        FALSE         FALSE                FALSE               FALSE
## [27,] FALSE        FALSE         FALSE                FALSE               FALSE
## [28,] FALSE        FALSE         FALSE                FALSE               FALSE
## [29,] FALSE        FALSE         FALSE                FALSE               FALSE
## [30,] FALSE        FALSE         FALSE                FALSE               FALSE
## [31,] FALSE        FALSE         FALSE                FALSE               FALSE
## [32,] FALSE        FALSE         FALSE                FALSE               FALSE
## [33,] FALSE        FALSE         FALSE                FALSE               FALSE
## [34,] FALSE        FALSE         FALSE                FALSE               FALSE
## [35,] FALSE        FALSE         FALSE                FALSE               FALSE
## [36,] FALSE        FALSE         FALSE                FALSE               FALSE
## [37,] FALSE        FALSE         FALSE                FALSE               FALSE
## [38,] FALSE        FALSE         FALSE                FALSE               FALSE
## [39,] FALSE        FALSE         FALSE                FALSE               FALSE
## [40,] FALSE        FALSE         FALSE                FALSE               FALSE
## [41,] FALSE        FALSE         FALSE                FALSE               FALSE
## [42,] FALSE        FALSE         FALSE                FALSE               FALSE
## [43,] FALSE        FALSE         FALSE                FALSE               FALSE
## [44,] FALSE        FALSE         FALSE                FALSE               FALSE
## [45,] FALSE        FALSE         FALSE                FALSE               FALSE
## [46,] FALSE        FALSE         FALSE                FALSE               FALSE
## [47,] FALSE        FALSE         FALSE                FALSE               FALSE
## [48,] FALSE        FALSE         FALSE                FALSE               FALSE
## [49,] FALSE        FALSE         FALSE                FALSE               FALSE
## [50,] FALSE        FALSE         FALSE                FALSE               FALSE
## [51,] FALSE        FALSE         FALSE                FALSE               FALSE
## [52,] FALSE        FALSE         FALSE                FALSE               FALSE
## [53,] FALSE        FALSE         FALSE                FALSE               FALSE
## [54,] FALSE        FALSE         FALSE                FALSE               FALSE
## [55,] FALSE        FALSE         FALSE                FALSE               FALSE
##       motivasi_belajar   ipk
##  [1,]            FALSE FALSE
##  [2,]            FALSE FALSE
##  [3,]            FALSE FALSE
##  [4,]            FALSE FALSE
##  [5,]            FALSE FALSE
##  [6,]            FALSE FALSE
##  [7,]            FALSE FALSE
##  [8,]            FALSE FALSE
##  [9,]            FALSE FALSE
## [10,]            FALSE FALSE
## [11,]            FALSE FALSE
## [12,]            FALSE FALSE
## [13,]            FALSE FALSE
## [14,]            FALSE FALSE
## [15,]            FALSE FALSE
## [16,]            FALSE FALSE
## [17,]            FALSE FALSE
## [18,]            FALSE FALSE
## [19,]            FALSE FALSE
## [20,]            FALSE FALSE
## [21,]            FALSE FALSE
## [22,]            FALSE FALSE
## [23,]            FALSE FALSE
## [24,]            FALSE FALSE
## [25,]            FALSE FALSE
## [26,]            FALSE FALSE
## [27,]            FALSE FALSE
## [28,]            FALSE FALSE
## [29,]            FALSE FALSE
## [30,]            FALSE FALSE
## [31,]            FALSE FALSE
## [32,]            FALSE FALSE
## [33,]            FALSE FALSE
## [34,]            FALSE FALSE
## [35,]            FALSE FALSE
## [36,]            FALSE FALSE
## [37,]            FALSE FALSE
## [38,]            FALSE FALSE
## [39,]            FALSE FALSE
## [40,]            FALSE FALSE
## [41,]            FALSE FALSE
## [42,]            FALSE FALSE
## [43,]            FALSE FALSE
## [44,]            FALSE FALSE
## [45,]            FALSE FALSE
## [46,]            FALSE FALSE
## [47,]            FALSE FALSE
## [48,]            FALSE FALSE
## [49,]            FALSE FALSE
## [50,]            FALSE FALSE
## [51,]            FALSE FALSE
## [52,]            FALSE FALSE
## [53,]            FALSE FALSE
## [54,]            FALSE FALSE
## [55,]            FALSE FALSE
any(is.na(df_mahasiswa))
## [1] FALSE
sum(is.na(df_mahasiswa))
## [1] 0
df_mahasiswa %>%
  group_by(jenis_kelamin) %>%
  summarise(Jumlah = n())
## # A tibble: 2 × 2
##   jenis_kelamin Jumlah
##   <chr>          <int>
## 1 L                 32
## 2 P                 23
df_mahasiswa %>%
  group_by(jenis_kelamin) %>%
  summarise(rata_rata_ipk = mean(ipk))
## # A tibble: 2 × 2
##   jenis_kelamin rata_rata_ipk
##   <chr>                 <dbl>
## 1 L                      3.16
## 2 P                      3.18
df_mahasiswa %>%
  arrange(desc(motivasi_belajar)) %>%
  slice(1)
##    X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 54       MHS054             L                    5                   4
##   motivasi_belajar  ipk
## 1              100 3.41
hasil_analisis <- df_mahasiswa %>%
  filter(frekuensi_login_lms == max(frekuensi_login_lms)) %>%
  mutate(ipk_tinggi = ifelse(ipk > 3.5, "YA (>3.5)", "TIDAK (<=3.5)"))

print(hasil_analisis)
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1   6       MHS006             L                    3                   7
## 2   7       MHS007             P                    1                   7
## 3  17       MHS017             L                    2                   7
## 4  18       MHS018             L                    5                   7
## 5  22       MHS022             P                    4                   7
## 6  31       MHS031             P                    2                   7
## 7  33       MHS033             P                    1                   7
## 8  41       MHS041             L                    5                   7
## 9  44       MHS044             P                    2                   7
## 10 55       MHS055             P                    2                   7
##    motivasi_belajar  ipk    ipk_tinggi
## 1                61 3.10 TIDAK (<=3.5)
## 2                44 2.98 TIDAK (<=3.5)
## 3                52 3.06 TIDAK (<=3.5)
## 4                92 3.89     YA (>3.5)
## 5                72 3.69     YA (>3.5)
## 6                71 3.22 TIDAK (<=3.5)
## 7                46 3.11 TIDAK (<=3.5)
## 8                90 3.73     YA (>3.5)
## 9                63 3.15 TIDAK (<=3.5)
## 10               71 3.21 TIDAK (<=3.5)
df_mahasiswa %>%
  group_by(jam_belajar_per_hari) %>%
  summarise(rata_rata_ipk = mean(ipk))
## # A tibble: 5 × 2
##   jam_belajar_per_hari rata_rata_ipk
##                  <int>         <dbl>
## 1                    1          2.79
## 2                    2          3.06
## 3                    3          2.95
## 4                    4          3.33
## 5                    5          3.51
df_mahasiswa %>%
  arrange(desc(ipk)) %>%
  slice(1)
##    X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 18       MHS018             L                    5                   7
##   motivasi_belajar  ipk
## 1               92 3.89
hasil <- df_mahasiswa %>%
  filter(ipk > 3.5, motivasi_belajar > 85)
table(hasil$jenis_kelamin)
## 
## L P 
## 4 1