df_mahasiswa <- read.csv("df_mahasiswa.csv")
head(df_mahasiswa)
## X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1 1 MHS001 L 4 1
## 2 2 MHS002 P 4 2
## 3 3 MHS003 P 2 6
## 4 4 MHS004 P 5 3
## 5 5 MHS005 L 3 2
## 6 6 MHS006 L 3 7
## motivasi_belajar ipk
## 1 82 3.12
## 2 73 3.45
## 3 71 3.07
## 4 98 3.43
## 5 81 2.83
## 6 61 3.10
str(df_mahasiswa)
## 'data.frame': 55 obs. of 7 variables:
## $ X : int 1 2 3 4 5 6 7 8 9 10 ...
## $ id_mahasiswa : chr "MHS001" "MHS002" "MHS003" "MHS004" ...
## $ jenis_kelamin : chr "L" "P" "P" "P" ...
## $ jam_belajar_per_hari: int 4 4 2 5 3 3 1 3 2 1 ...
## $ frekuensi_login_lms : int 1 2 6 3 2 7 7 4 6 5 ...
## $ motivasi_belajar : int 82 73 71 98 81 61 44 69 44 46 ...
## $ ipk : num 3.12 3.45 3.07 3.43 2.83 3.1 2.98 3.08 2.82 2.93 ...
anyNA(df_mahasiswa)
## [1] FALSE
table(df_mahasiswa$jenis_kelamin)
##
## L P
## 32 23
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
hitung <- df_mahasiswa %>%
group_by(jenis_kelamin) %>%
summarise(rata_rata_ipk = mean(ipk, na.rm = TRUE)) %>%
arrange(desc(rata_rata_ipk))
tertinggi <- hitung %>% slice(1)
tertinggi
## # A tibble: 1 × 2
## jenis_kelamin rata_rata_ipk
## <chr> <dbl>
## 1 P 3.18
max_motivasi <- max(df_mahasiswa$motivasi_belajar, na.rm = TRUE)
hasil <- df_mahasiswa %>%
filter(motivasi_belajar == max_motivasi) %>%
select(id_mahasiswa, motivasi_belajar)
print(hasil)
## id_mahasiswa motivasi_belajar
## 1 MHS054 100
mx <- max(df_mahasiswa$frekuensi_login_lms, na.rm = TRUE)
res <- df_mahasiswa %>%
filter(frekuensi_login_lms == mx) %>%
transmute(id_mahasiswa, frekuensi_login_lms, ipk, ipk_tinggi = ipk > 3.5)
print(res)
## id_mahasiswa frekuensi_login_lms ipk ipk_tinggi
## 1 MHS006 7 3.10 FALSE
## 2 MHS007 7 2.98 FALSE
## 3 MHS017 7 3.06 FALSE
## 4 MHS018 7 3.89 TRUE
## 5 MHS022 7 3.69 TRUE
## 6 MHS031 7 3.22 FALSE
## 7 MHS033 7 3.11 FALSE
## 8 MHS041 7 3.73 TRUE
## 9 MHS044 7 3.15 FALSE
## 10 MHS055 7 3.21 FALSE
df_mahasiswa %>%
group_by(jam_belajar_per_hari) %>%
summarise(rata_rata_ipk = mean(ipk))
## # A tibble: 5 × 2
## jam_belajar_per_hari rata_rata_ipk
## <int> <dbl>
## 1 1 2.79
## 2 2 3.06
## 3 3 2.95
## 4 4 3.33
## 5 5 3.51
max_ipk <- max(df_mahasiswa$ipk, na.rm = TRUE)
hasil <- df_mahasiswa %>%
filter(ipk == max_ipk) %>%
select(id_mahasiswa, ipk, motivasi_belajar)
print(hasil)
## id_mahasiswa ipk motivasi_belajar
## 1 MHS018 3.89 92
rekap_jenis_kelamin <- df_mahasiswa %>%
filter(ipk > 3.5, motivasi_belajar > 85) %>%
count(jenis_kelamin, name = "jumlah")
L <- rekap_jenis_kelamin$jumlah[rekap_jenis_kelamin$jenis_kelamin == "L"]; if (length(L) == 0) L <- 0
P <- rekap_jenis_kelamin$jumlah[rekap_jenis_kelamin$jenis_kelamin == "P"]; if (length(P) == 0) P <- 0
cat("L =", L, "; P =", P, "\n")
## L = 4 ; P = 1