# siapkan data dan library
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
df = as.data.frame(read.csv("mahasiswa.csv"))
df
##     X id_mahasiswa jenis_kelamin jam_belajar_per_hari frekuensi_login_lms
## 1   1       MHS001             L                    4                   1
## 2   2       MHS002             P                    4                   2
## 3   3       MHS003             P                    2                   6
## 4   4       MHS004             P                    5                   3
## 5   5       MHS005             L                    3                   2
## 6   6       MHS006             L                    3                   7
## 7   7       MHS007             P                    1                   7
## 8   8       MHS008             L                    3                   4
## 9   9       MHS009             P                    2                   6
## 10 10       MHS010             L                    1                   5
## 11 11       MHS011             L                    1                   1
## 12 12       MHS012             P                    1                   2
## 13 13       MHS013             P                    2                   6
## 14 14       MHS014             L                    4                   2
## 15 15       MHS015             L                    1                   2
## 16 16       MHS016             L                    5                   1
## 17 17       MHS017             L                    2                   7
## 18 18       MHS018             L                    5                   7
## 19 19       MHS019             L                    5                   2
## 20 20       MHS020             L                    3                   1
## 21 21       MHS021             L                    1                   6
## 22 22       MHS022             P                    4                   7
## 23 23       MHS023             L                    4                   4
## 24 24       MHS024             P                    5                   4
## 25 25       MHS025             L                    3                   1
## 26 26       MHS026             L                    4                   6
## 27 27       MHS027             L                    2                   3
## 28 28       MHS028             P                    2                   6
## 29 29       MHS029             L                    2                   2
## 30 30       MHS030             P                    5                   3
## 31 31       MHS031             P                    2                   7
## 32 32       MHS032             L                    1                   2
## 33 33       MHS033             P                    1                   7
## 34 34       MHS034             P                    5                   4
## 35 35       MHS035             L                    4                   1
## 36 36       MHS036             P                    3                   1
## 37 37       MHS037             L                    4                   6
## 38 38       MHS038             L                    4                   1
## 39 39       MHS039             P                    1                   1
## 40 40       MHS040             L                    4                   2
## 41 41       MHS041             L                    5                   7
## 42 42       MHS042             P                    4                   6
## 43 43       MHS043             P                    4                   5
## 44 44       MHS044             P                    2                   7
## 45 45       MHS045             P                    5                   2
## 46 46       MHS046             L                    1                   3
## 47 47       MHS047             L                    4                   5
## 48 48       MHS048             L                    5                   4
## 49 49       MHS049             P                    4                   5
## 50 50       MHS050             P                    2                   4
## 51 51       MHS051             L                    4                   6
## 52 52       MHS052             L                    4                   4
## 53 53       MHS053             L                    3                   4
## 54 54       MHS054             L                    5                   4
## 55 55       MHS055             P                    2                   7
##    motivasi_belajar  ipk
## 1                82 3.12
## 2                73 3.45
## 3                71 3.07
## 4                98 3.43
## 5                81 2.83
## 6                61 3.10
## 7                44 2.98
## 8                69 3.08
## 9                44 2.82
## 10               46 2.93
## 11               56 2.64
## 12               35 2.71
## 13               59 3.11
## 14               81 3.31
## 15               44 2.90
## 16               90 3.46
## 17               52 3.06
## 18               92 3.89
## 19               84 3.09
## 20               73 2.73
## 21               47 2.96
## 22               72 3.69
## 23               83 3.54
## 24               81 3.61
## 25               70 2.65
## 26               89 3.32
## 27               59 2.94
## 28               53 3.14
## 29               48 2.89
## 30               87 3.40
## 31               71 3.22
## 32               39 2.66
## 33               46 3.11
## 34               87 3.56
## 35               91 3.13
## 36               66 2.95
## 37               68 3.67
## 38               90 3.29
## 39               52 2.52
## 40               80 3.17
## 41               90 3.73
## 42               73 3.05
## 43               91 3.29
## 44               63 3.15
## 45               96 3.33
## 46               43 2.49
## 47               82 3.13
## 48               92 3.70
## 49               73 3.22
## 50               57 3.05
## 51               92 3.65
## 52               88 3.30
## 53               80 3.29
## 54              100 3.41
## 55               71 3.21
# cek missing value
sum(is.na(df))
## [1] 0
# cek laki laki perempuan
kelamin <- df %>%
  group_by(jenis_kelamin) %>%
  summarise(jumlah = n())

kelamin
## # A tibble: 2 × 2
##   jenis_kelamin jumlah
##   <chr>          <int>
## 1 L                 32
## 2 P                 23
# rata rata ipk tinggi berdasrkan kelamin
ipk <- df %>%
  group_by(jenis_kelamin) %>%
  summarise(mean = mean(ipk))

ipk
## # A tibble: 2 × 2
##   jenis_kelamin  mean
##   <chr>         <dbl>
## 1 L              3.16
## 2 P              3.18
# motivasi belajae tinggi
motivasi <- df %>%
  select(id_mahasiswa, motivasi_belajar) %>%
  arrange(desc(motivasi_belajar))
motivasi
##    id_mahasiswa motivasi_belajar
## 1        MHS054              100
## 2        MHS004               98
## 3        MHS045               96
## 4        MHS018               92
## 5        MHS048               92
## 6        MHS051               92
## 7        MHS035               91
## 8        MHS043               91
## 9        MHS016               90
## 10       MHS038               90
## 11       MHS041               90
## 12       MHS026               89
## 13       MHS052               88
## 14       MHS030               87
## 15       MHS034               87
## 16       MHS019               84
## 17       MHS023               83
## 18       MHS001               82
## 19       MHS047               82
## 20       MHS005               81
## 21       MHS014               81
## 22       MHS024               81
## 23       MHS040               80
## 24       MHS053               80
## 25       MHS002               73
## 26       MHS020               73
## 27       MHS042               73
## 28       MHS049               73
## 29       MHS022               72
## 30       MHS003               71
## 31       MHS031               71
## 32       MHS055               71
## 33       MHS025               70
## 34       MHS008               69
## 35       MHS037               68
## 36       MHS036               66
## 37       MHS044               63
## 38       MHS006               61
## 39       MHS013               59
## 40       MHS027               59
## 41       MHS050               57
## 42       MHS011               56
## 43       MHS028               53
## 44       MHS017               52
## 45       MHS039               52
## 46       MHS029               48
## 47       MHS021               47
## 48       MHS010               46
## 49       MHS033               46
## 50       MHS007               44
## 51       MHS009               44
## 52       MHS015               44
## 53       MHS046               43
## 54       MHS032               39
## 55       MHS012               35
# lms dan ipk
lms_ipkTinggi <- df %>%
  arrange(desc(frekuensi_login_lms)) %>%
  filter(ipk > 3.5) %>%
  select(id_mahasiswa, frekuensi_login_lms, ipk)

lms_ipkRendah <- df %>%
  arrange(desc(frekuensi_login_lms)) %>%
  filter(ipk < 3.5) %>%
  select(id_mahasiswa, frekuensi_login_lms, ipk)

lms_ipkTinggi
##   id_mahasiswa frekuensi_login_lms  ipk
## 1       MHS018                   7 3.89
## 2       MHS022                   7 3.69
## 3       MHS041                   7 3.73
## 4       MHS037                   6 3.67
## 5       MHS051                   6 3.65
## 6       MHS023                   4 3.54
## 7       MHS024                   4 3.61
## 8       MHS034                   4 3.56
## 9       MHS048                   4 3.70
lms_ipkRendah
##    id_mahasiswa frekuensi_login_lms  ipk
## 1        MHS006                   7 3.10
## 2        MHS007                   7 2.98
## 3        MHS017                   7 3.06
## 4        MHS031                   7 3.22
## 5        MHS033                   7 3.11
## 6        MHS044                   7 3.15
## 7        MHS055                   7 3.21
## 8        MHS003                   6 3.07
## 9        MHS009                   6 2.82
## 10       MHS013                   6 3.11
## 11       MHS021                   6 2.96
## 12       MHS026                   6 3.32
## 13       MHS028                   6 3.14
## 14       MHS042                   6 3.05
## 15       MHS010                   5 2.93
## 16       MHS043                   5 3.29
## 17       MHS047                   5 3.13
## 18       MHS049                   5 3.22
## 19       MHS008                   4 3.08
## 20       MHS050                   4 3.05
## 21       MHS052                   4 3.30
## 22       MHS053                   4 3.29
## 23       MHS054                   4 3.41
## 24       MHS004                   3 3.43
## 25       MHS027                   3 2.94
## 26       MHS030                   3 3.40
## 27       MHS046                   3 2.49
## 28       MHS002                   2 3.45
## 29       MHS005                   2 2.83
## 30       MHS012                   2 2.71
## 31       MHS014                   2 3.31
## 32       MHS015                   2 2.90
## 33       MHS019                   2 3.09
## 34       MHS029                   2 2.89
## 35       MHS032                   2 2.66
## 36       MHS040                   2 3.17
## 37       MHS045                   2 3.33
## 38       MHS001                   1 3.12
## 39       MHS011                   1 2.64
## 40       MHS016                   1 3.46
## 41       MHS020                   1 2.73
## 42       MHS025                   1 2.65
## 43       MHS035                   1 3.13
## 44       MHS036                   1 2.95
## 45       MHS038                   1 3.29
## 46       MHS039                   1 2.52
# jam terbang tinggi = ipk tinggi
jam_tinggi <- df %>%
  select(jam_belajar_per_hari, ipk) %>%
  filter(jam_belajar_per_hari >= 4) %>%
  summarise(mean = mean(ipk))

jam_rendah <- df %>%
  select(jam_belajar_per_hari, ipk) %>%
  filter(jam_belajar_per_hari < 4) %>%
  summarise(mean = mean(ipk))

jam_rendah
##       mean
## 1 2.935357
jam_tinggi
##       mean
## 1 3.405185
# ipk tinggi dan motivasi
ipk_motivasi <- df %>%
  select(id_mahasiswa, motivasi_belajar, ipk) %>%
  arrange(desc(ipk))
ipk_motivasi
##    id_mahasiswa motivasi_belajar  ipk
## 1        MHS018               92 3.89
## 2        MHS041               90 3.73
## 3        MHS048               92 3.70
## 4        MHS022               72 3.69
## 5        MHS037               68 3.67
## 6        MHS051               92 3.65
## 7        MHS024               81 3.61
## 8        MHS034               87 3.56
## 9        MHS023               83 3.54
## 10       MHS016               90 3.46
## 11       MHS002               73 3.45
## 12       MHS004               98 3.43
## 13       MHS054              100 3.41
## 14       MHS030               87 3.40
## 15       MHS045               96 3.33
## 16       MHS026               89 3.32
## 17       MHS014               81 3.31
## 18       MHS052               88 3.30
## 19       MHS038               90 3.29
## 20       MHS043               91 3.29
## 21       MHS053               80 3.29
## 22       MHS031               71 3.22
## 23       MHS049               73 3.22
## 24       MHS055               71 3.21
## 25       MHS040               80 3.17
## 26       MHS044               63 3.15
## 27       MHS028               53 3.14
## 28       MHS035               91 3.13
## 29       MHS047               82 3.13
## 30       MHS001               82 3.12
## 31       MHS013               59 3.11
## 32       MHS033               46 3.11
## 33       MHS006               61 3.10
## 34       MHS019               84 3.09
## 35       MHS008               69 3.08
## 36       MHS003               71 3.07
## 37       MHS017               52 3.06
## 38       MHS042               73 3.05
## 39       MHS050               57 3.05
## 40       MHS007               44 2.98
## 41       MHS021               47 2.96
## 42       MHS036               66 2.95
## 43       MHS027               59 2.94
## 44       MHS010               46 2.93
## 45       MHS015               44 2.90
## 46       MHS029               48 2.89
## 47       MHS005               81 2.83
## 48       MHS009               44 2.82
## 49       MHS020               73 2.73
## 50       MHS012               35 2.71
## 51       MHS032               39 2.66
## 52       MHS025               70 2.65
## 53       MHS011               56 2.64
## 54       MHS039               52 2.52
## 55       MHS046               43 2.49
ipk_mot_85 <- df %>%
  filter(ipk >= 3.5) %>%
  filter(motivasi_belajar >= 55) %>%
  group_by(jenis_kelamin) %>%
  summarise(sum = n())
ipk_mot_85
## # A tibble: 2 × 2
##   jenis_kelamin   sum
##   <chr>         <int>
## 1 L                 6
## 2 P                 3