Do not change anything in the following chunk

You will be working on olympic_gymnasts dataset. Do not change the code below:

olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')

olympic_gymnasts <- olympics %>% 
  filter(!is.na(age)) %>%             # only keep athletes with known age
  filter(sport == "Gymnastics") %>%   # keep only gymnasts
  mutate(
    medalist = case_when(             # add column for success in medaling
      is.na(medal) ~ FALSE,           # NA values go to FALSE
      !is.na(medal) ~ TRUE            # non-NA values (Gold, Silver, Bronze) go to TRUE
    )
  )

More information about the dataset can be found at

https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md

Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.

df<- olympic_gymnasts|>
  select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
##    name                    sex     age team     year medalist
##    <chr>                   <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  2 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  3 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  4 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  5 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  6 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  7 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  8 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  9 Paavo Johannes Aaltonen M        32 Finland  1952 FALSE   
## 10 Paavo Johannes Aaltonen M        32 Finland  1952 TRUE    
## # ℹ 25,518 more rows

Question 2: From df create df2 that only have year of 2008 2012, and 2016

df2 <- df |>
  filter(year %in% c(2008, 2012, 2016))
df2
## # A tibble: 2,703 × 6
##    name              sex     age team     year medalist
##    <chr>             <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  2 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  3 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  4 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  5 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  6 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  7 Katja Abel        F        25 Germany  2008 FALSE   
##  8 Katja Abel        F        25 Germany  2008 FALSE   
##  9 Katja Abel        F        25 Germany  2008 FALSE   
## 10 Katja Abel        F        25 Germany  2008 FALSE   
## # ℹ 2,693 more rows

Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.

df2 |>
  group_by(year) |>
  summarize(mean_age = mean(age))
## # A tibble: 3 × 2
##    year mean_age
##   <dbl>    <dbl>
## 1  2008     21.6
## 2  2012     21.9
## 3  2016     22.2

Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)

oly_year <- olympic_gymnasts |>
  group_by(year) |>
  summarize(mean_age = mean(age))

Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure

# Your R code here
# Which teams had the highest percentage of medalists among female gymnasts in the 2016 Olympics?

medal_analysis <- olympic_gymnasts |>
  filter(year == 2016, sex == "F") |>
  group_by(team) |>
  summarize(
    total_gymnasts = n(),
    medalists = sum(medalist),
    medal_percentage = (medalists / total_gymnasts) * 100
  ) |>
  arrange(desc(medal_percentage)) |>
  head(5)  # Show top 5 teams

medal_analysis
## # A tibble: 5 × 4
##   team          total_gymnasts medalists medal_percentage
##   <chr>                  <int>     <int>            <dbl>
## 1 United States             21        13            61.9 
## 2 Russia                    22         8            36.4 
## 3 China                     19         5            26.3 
## 4 Switzerland                5         1            20   
## 5 Germany                   19         1             5.26
# This code was written with AI assistance.

Discussion: Enter your discussion of results here. In question 5, I am analyzing which teams were most successful in terms of turning their female gymnasts into medalists in the 2016 Olympics. I used filter to select only female gymnasts from 2016, then I used group by to organize the data by team. I also used summarize to calculate the total number of gymnasts, the number of medalists, and the medal percentage. Then I used arrange to sort the results and head to show only the top 5 performing teams. This code and the resulting data clearly shows which teams had the highest efficiency in producing medal-winning female gymnasts.