Intro

Questions

Variation

visualizing distributions

diamonds %>%
    ggplot(aes(x = cut)) +
    geom_bar()

diamonds %>%
    ggplot(mapping = aes(x = carat)) +
    geom_histogram(binwidth = 0.5)

diamonds %>%
    filter(carat < 3) %>%
   
     ggplot(aes(x = carat)) +
    geom_histogram(binwidth = 0.5)

diamonds %>%
    ggplot(aes(x = carat, color = cut)) +
    geom_freqpoly()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

typical values

diamonds %>%
    
    #filter out diamonds > 3 carat 
    filter(carat < 3) %>%
    
    #plot
    ggplot(aes(x = carat)) +
    geom_histogram(binwidth = 0.01)

faithful %>%
    ggplot(aes(eruptions)) +
    geom_histogram(binwidth = 0.25)

unusual values

diamonds %>%
    ggplot(aes(y)) +
    geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

diamonds %>%
    ggplot(aes(y)) +
    geom_histogram() +
    coord_cartesian(ylim = c(0, 50))
## `stat_bin()` using `bins = 30`. Pick better value `binwidth`.

## Missing values

diamonds %>%
   # filter(y <3 | y > 20) %>%
   
     mutate(y = ifelse(y <3 | y > 20, NA, y)) %>%
    
    #plot
    ggplot(aes(x = x, y = y)) +
    geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

Covariation

a categorical and continous varible

diamonds %>%
    ggplot(aes(x = cut, y = price)) +
    geom_boxplot()

two categorical variables

diamonds %>%
    count(color, cut) %>%
    ggplot(aes(x = color, y = cut, fill = n)) +
    geom_tile()

two continous variables

library(hexbin)
diamonds %>%
    ggplot(aes(x = carat, y = price)) +
    geom_hex()

diamonds %>%
    ggplot(aes(x = carat, y = price)) +
    geom_boxplot(aes(group = cut_width(carat, 0.1)))

Patterns and Models

mod <- lm(log(price) ~ log(carat), data = diamonds)

diamonds2 <- diamonds %>%
    modelr::add_residuals(mod) %>%
    mutate(resid = exp(resid))

diamonds2 %>%
    ggplot(aes(carat, resid)) +
    geom_point()

diamonds2 %>%
    ggplot(aes(cut, resid)) +
    geom_boxplot()