podatki <- data.frame("ID"= c(1, 2, 3, 4, 5),
"Visina" = c(170, 175, 177, 180, 182),
"Starost" = c(20, 22, 22, 23, 24),
"Spol" = c("Z", "Z", "M", "M", "M"))
mean(podatki$Visina)
## [1] 176.8
summary(podatki[ , c (-1,-4)])
## Visina Starost
## Min. :170.0 Min. :20.0
## 1st Qu.:175.0 1st Qu.:22.0
## Median :177.0 Median :22.0
## Mean :176.8 Mean :22.2
## 3rd Qu.:180.0 3rd Qu.:23.0
## Max. :182.0 Max. :24.0
podatki$Teza <- c(65,60,70,72,80)
Izdracunaj BDM indeks
podatki$BMI <- round(podatki$Teza / (podatki$Visina/100)^2, 2)
#install.packages("pastecs")
library(pastecs)
round(stat.desc(podatki[ , c(-1,-4)]), 3)
## Visina Starost Teza BMI
## nbr.val 5.000 5.000 5.000 5.000
## nbr.null 0.000 0.000 0.000 0.000
## nbr.na 0.000 0.000 0.000 0.000
## min 170.000 20.000 60.000 19.590
## max 182.000 24.000 80.000 24.150
## range 12.000 4.000 20.000 4.560
## sum 884.000 111.000 347.000 110.790
## median 177.000 22.000 70.000 22.340
## mean 176.800 22.200 69.400 22.158
## SE.mean 2.083 0.663 3.370 0.732
## CI.mean.0.95 5.784 1.842 9.358 2.032
## var 21.700 2.200 56.800 2.677
## std.dev 4.658 1.483 7.537 1.636
## coef.var 0.026 0.067 0.109 0.074
#install.packages("psych")
library(psych)
describe(podatki$Visina)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 5 176.8 4.66 177 176.8 4.45 170 182 12 -0.29 -1.73 2.08