Data Exploration

Exercises ~ Week 2

Logo


1 Exercise 1

The following table shows sample information for three students. Each observation represents a single student and includes details such as their unique student ID, name, age, total credits completed, major field of study, and year level.

This dataset demonstrates a mixture of variable types:

  • Nominal: StudentID, Name, Major
  • Numeric: Age (continuous), CreditsCompleted (discrete)
  • Ordinal: YearLevel (Freshman → Senior)
StudentID Name Age CreditsCompleted Major YearLevel
S001 Alice 20 45 Data Sains Sophomore
S002 Budi 21 60 Mathematics Junior
S003 Citra 19 30 Statistics Freshman
# 1. Create vectors for each variable
StudentID <- c("S001", "S002", "S003")       # Nominal / ID
Name <- c("Alice", "Budi", "Citra")          # Nominal / Name
Age <- c(20, 21, 19)                         # Numeric / Continuous
CreditsCompleted <- c(45, 60, 30)            # Numeric / Discrete

# Nominal
Major <- c("Data Sains", "Mathematics", "Statistics")  

# Ordinal
YearLevel <- factor(c("Sophomore", "Junior", "Freshman"),
                    levels = c("Freshman","Sophomore","Junior","Senior"),
                    ordered = TRUE)          

# 2. Combine all vectors into a data frame
students <- data.frame(
  StudentID, Name, Age, CreditsCompleted, Major, YearLevel,
  stringsAsFactors = FALSE
)

# 3. Display the data frame
print(students)
##   StudentID  Name Age CreditsCompleted       Major YearLevel
## 1      S001 Alice  20               45  Data Sains Sophomore
## 2      S002  Budi  21               60 Mathematics    Junior
## 3      S003 Citra  19               30  Statistics  Freshman

2 Exercise 2

Identify Data Types: Determine the type of data for each of the following variables:

# Install knitr package if not already installed
# install.packages("knitr")
library(knitr)

# Create a data frame for Data Types
variables_info <- data.frame(
  No = 1:5,
  Variable = c(
    "Number of vehicles passing through the toll road each day",
    "Student height in cm",
    "Employee gender (Male / Female)",
    "Customer satisfaction level: Low, Medium, High",
    "Respondent's favorite color: Red, Blue, Green"
  ),
  DataType = c(
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer"
  ),
  Subtype = c(
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
kable(variables_info, 
      caption = "Table of Variables and Data Types")
Table of Variables and Data Types
No Variable DataType Subtype
1 Number of vehicles passing through the toll road each day Your Answer Your Answer
2 Student height in cm Your Answer Your Answer
3 Employee gender (Male / Female) Your Answer Your Answer
4 Customer satisfaction level: Low, Medium, High Your Answer Your Answer
5 Respondent’s favorite color: Red, Blue, Green Your Answer Your Answer

3 Exercise 3

Classify Data Sources: Determine whether the following data comes from internal or external sources, and whether it is structured or unstructured:

# Install DT package if not already installed
# install.packages("DT")
library(DT)

# Create a data frame for data sources 
data_sources <- data.frame(
  No = 1:4,
  DataSource = c(
    "Daily sales transaction data of the company",
    "Weather reports from BMKG",
    "Product reviews on social media",
    "Warehouse inventory reports"
  ),
  Internal_External = c(
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer"
  ),
  Structured_Unstructured = c(
    "Your Answer",
    "Your Answer",
    "Your Answer",
    "Your Answer"
  ),
  stringsAsFactors = FALSE
)

# Display the data frame as a neat table
datatable(data_sources, 
          caption = "Table of Data Sources",
          rownames = FALSE) # hides the index column

4 Exercise 4

Dataset Structure: Consider the following transaction table:

Date Qty Price Product CustomerTier
2025-10-01 2 1000 Laptop High
2025-10-01 5 20 Mouse Medium
2025-10-02 1 1000 Laptop Low
2025-10-02 3 30 Keyboard Medium
2025-10-03 4 50 Mouse Medium
2025-10-03 2 1000 Laptop High
2025-10-04 6 25 Keyboard Low
2025-10-04 1 1000 Laptop High
2025-10-05 3 40 Mouse Low
2025-10-05 5 10 Keyboard Medium

Your Assignment Instructions: Creating a Transactions Table above in R

  1. Create a data frame in R called transactions containing the data above.

  2. Identify which variables are numeric and which are categorical

  3. Calculate total revenue for each transaction by multiplying Qty × Price and add it as a new column Total.

  4. Compute summary statistics:

    • Total quantity sold for each product
    • Total revenue per product
    • Average price per product
  5. Visualize the data:

    • Create a barplot showing total quantity sold per product.
    • Create a pie chart showing the proportion of total revenue per customer tier.
  6. Optional Challenge:

    • Find which date had the highest total revenue.
    • Create a stacked bar chart showing quantity sold per product by customer tier.

Hints: Use data.frame(), aggregate(), barplot(), pie(), and basic arithmetic operations in R.

5 Exercise 5

Create Your Own Data Frame:

Objective: Create a data frame in R with 30 rows containing a mix of data types: continuous, discrete, nominal, and ordinal.

5.1 Instructions

  1. Open RStudio or the R console.

  2. Create a vector for each column in your data frame:

    • Date: 30 dates (can be sequential or random within a month/year)
    • Continuous: numeric values that can take decimal values (e.g., height, weight, temperature)
    • Discrete: numeric values that can only take whole numbers (e.g., number of items, number of vehicles)
    • Nominal: categorical values with no order (e.g., color, gender, city)
    • Ordinal: categorical values with a defined order (e.g., Low, Medium, High; Beginner, Intermediate, Expert)
  3. Combine all vectors into a data frame called my_data.

  4. Check your data frame using head() or View() to ensure it has 30 rows and the columns are correct.

  5. Optional tasks:

    • Summarize each column using summary()
    • Count the frequency of each category for Nominal and Ordinal columns using table()

5.2 Hints

  • Use seq.Date() or as.Date() to generate the Date column.
  • Use runif() or rnorm() for continuous numeric data.
  • Use sample() for discrete, nominal, and ordinal data.
  • Ensure the ordinal vector is created with factor(..., levels = c("Low","Medium","High"), ordered = TRUE) (or similar).
LS0tCnRpdGxlOiAiRGF0YSBFeHBsb3JhdGlvbiIgICAgICAgIyBNYWluIHRpdGxlIG9mIHRoZSBkb2N1bWVudApzdWJ0aXRsZTogIkV4ZXJjaXNlcyB+IFdlZWsgMiIgICMgU3VidGl0bGUgb3IgdG9waWMgZm9yIHdlZWsgMgphdXRob3I6ICJZb3VyIEZ1bGwgTmFtZSBIZXJlIiAgICMgUmVwbGFjZSB3aXRoIHlvdXIgZnVsbCBuYW1lCmRhdGU6ICAiYHIgZm9ybWF0KFN5cy5EYXRlKCksICclQiAlZCwgJVknKWAiICMgQXV0byBkaXNwbGF5cyB0aGUgY3VycmVudCBkYXRlCm91dHB1dDogICAgICAgICAgICAgICAgICAgICAgICAgIyBPdXRwdXQgc2VjdGlvbiBkZWZpbmVzIHRoZSBmb3JtYXQgYW5kIGxheW91dCAKICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjogICAgICAjIGh0dHBzOi8vZ2l0aHViLmNvbS9qdWJhL3JtZGZvcm1hdHMKICAgIHNlbGZfY29udGFpbmVkOiB0cnVlICAgICAgICAjIEVtYmVkcyBhbGwgcmVzb3VyY2VzIChDU1MsIEpTLCBpbWFnZXMpIAogICAgdGh1bWJuYWlsczogdHJ1ZSAgICAgICAgICAgICMgRGlzcGxheXMgaW1hZ2UgdGh1bWJuYWlscyBpbiB0aGUgZG9jCiAgICBsaWdodGJveDogdHJ1ZSAgICAgICAgICAgICAgIyBFbmFibGVzIGNsaWNrIHRvIGVubGFyZ2UgaW1hZ2VzCiAgICBnYWxsZXJ5OiB0cnVlICAgICAgICAgICAgICAgIyBHcm91cHMgaW1hZ2VzIGludG8gYW4gaW50ZXJhY3RpdmUgZ2FsbGVyeQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlICAgICAgICMgQXV0b21hdGljYWxseSBudW1iZXJzIGFsbCBzZWN0aW9ucwogICAgbGliX2RpcjogbGlicyAgICAgICAgICAgICAgICMgRGlyZWN0b3J5IHdoZXJlIEphdmFTY3JpcHQvQ1NTIGxpYnJhcmllcwogICAgZGZfcHJpbnQ6ICJwYWdlZCIgICAgICAgICAgICMgRGlzcGxheXMgZGF0YSBmcmFtZXMgYXMgaW50ZXJhY3RpdmUgcGFnZWQgCiAgICBjb2RlX2ZvbGRpbmc6ICJzaG93IiAgICAgICAgIyBBbGxvd3MgZm9sZGluZy91bmZvbGRpbmcgUiBjb2RlIGJsb2NrcyAKICAgIGNvZGVfZG93bmxvYWQ6IHllcyAgICAgICAgICAjIEFkZHMgYSBidXR0b24gdG8gZG93bmxvYWQgYWxsIFIgY29kZQotLS0KCgo8aW1nIGlkPSJGb3RvIiBzcmM9Imh0dHBzOi8vZ2l0aHViLmNvbS9kc2NpZW5jZWxhYnMvaW1hZ2VzL2Jsb2IvbWFzdGVyL0xvZ29fRHNjaWVuY2VsYWJzX3YxLnBuZz9yYXc9dHJ1ZSIgYWx0PSJMb2dvIiBzdHlsZT0id2lkdGg6MjAwcHg7IGRpc3BsYXk6IGJsb2NrOyBtYXJnaW46IGF1dG87Ij4KCi0tLQoKIyMgRXhlcmNpc2UgMQoKVGhlIGZvbGxvd2luZyB0YWJsZSBzaG93cyBzYW1wbGUgaW5mb3JtYXRpb24gZm9yIHRocmVlIHN0dWRlbnRzLiBFYWNoIG9ic2VydmF0aW9uIHJlcHJlc2VudHMgYSBzaW5nbGUgc3R1ZGVudCBhbmQgaW5jbHVkZXMgZGV0YWlscyBzdWNoIGFzIHRoZWlyIHVuaXF1ZSBzdHVkZW50IElELCBuYW1lLCBhZ2UsIHRvdGFsIGNyZWRpdHMgY29tcGxldGVkLCBtYWpvciBmaWVsZCBvZiBzdHVkeSwgYW5kIHllYXIgbGV2ZWwuICAKClRoaXMgZGF0YXNldCBkZW1vbnN0cmF0ZXMgYSBtaXh0dXJlIG9mIHZhcmlhYmxlIHR5cGVzOiAgCgotICoqTm9taW5hbDoqKiBTdHVkZW50SUQsIE5hbWUsIE1ham9yICAKLSAqKk51bWVyaWM6KiogQWdlIChjb250aW51b3VzKSwgQ3JlZGl0c0NvbXBsZXRlZCAoZGlzY3JldGUpICAKLSAqKk9yZGluYWw6KiogWWVhckxldmVsIChGcmVzaG1hbiDihpIgU2VuaW9yKSAgCgp8IFN0dWRlbnRJRCB8IE5hbWUgICB8IEFnZSB8IENyZWRpdHNDb21wbGV0ZWQgfCBNYWpvciAgICAgICAgICAgIHwgWWVhckxldmVsIHwKfC0tLS0tLS0tLS0tfC0tLS0tLS0tfC0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tfAp8IFMwMDEgICAgICB8IEFsaWNlICB8IDIwICB8IDQ1ICAgICAgICAgICAgICB8IERhdGEgU2FpbnMgICAgICB8IFNvcGhvbW9yZSB8CnwgUzAwMiAgICAgIHwgQnVkaSAgIHwgMjEgIHwgNjAgICAgICAgICAgICAgIHwgTWF0aGVtYXRpY3MgICAgIHwgSnVuaW9yICAgIHwKfCBTMDAzICAgICAgfCBDaXRyYSAgfCAxOSAgfCAzMCAgICAgICAgICAgICAgfCBTdGF0aXN0aWNzICAgICAgfCBGcmVzaG1hbiAgfAoKYGBge3J9CiMgMS4gQ3JlYXRlIHZlY3RvcnMgZm9yIGVhY2ggdmFyaWFibGUKU3R1ZGVudElEIDwtIGMoIlMwMDEiLCAiUzAwMiIsICJTMDAzIikgICAgICAgIyBOb21pbmFsIC8gSUQKTmFtZSA8LSBjKCJBbGljZSIsICJCdWRpIiwgIkNpdHJhIikgICAgICAgICAgIyBOb21pbmFsIC8gTmFtZQpBZ2UgPC0gYygyMCwgMjEsIDE5KSAgICAgICAgICAgICAgICAgICAgICAgICAjIE51bWVyaWMgLyBDb250aW51b3VzCkNyZWRpdHNDb21wbGV0ZWQgPC0gYyg0NSwgNjAsIDMwKSAgICAgICAgICAgICMgTnVtZXJpYyAvIERpc2NyZXRlCgojIE5vbWluYWwKTWFqb3IgPC0gYygiRGF0YSBTYWlucyIsICJNYXRoZW1hdGljcyIsICJTdGF0aXN0aWNzIikgIAoKIyBPcmRpbmFsClllYXJMZXZlbCA8LSBmYWN0b3IoYygiU29waG9tb3JlIiwgIkp1bmlvciIsICJGcmVzaG1hbiIpLAogICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoIkZyZXNobWFuIiwiU29waG9tb3JlIiwiSnVuaW9yIiwiU2VuaW9yIiksCiAgICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpICAgICAgICAgIAoKIyAyLiBDb21iaW5lIGFsbCB2ZWN0b3JzIGludG8gYSBkYXRhIGZyYW1lCnN0dWRlbnRzIDwtIGRhdGEuZnJhbWUoCiAgU3R1ZGVudElELCBOYW1lLCBBZ2UsIENyZWRpdHNDb21wbGV0ZWQsIE1ham9yLCBZZWFyTGV2ZWwsCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFCikKCiMgMy4gRGlzcGxheSB0aGUgZGF0YSBmcmFtZQpwcmludChzdHVkZW50cykKYGBgCgoKIyMgRXhlcmNpc2UgMgoKKipJZGVudGlmeSBEYXRhIFR5cGVzOioqIERldGVybWluZSB0aGUgdHlwZSBvZiBkYXRhIGZvciBlYWNoIG9mIHRoZSBmb2xsb3dpbmcgdmFyaWFibGVzOgoKYGBge3J9CiMgSW5zdGFsbCBrbml0ciBwYWNrYWdlIGlmIG5vdCBhbHJlYWR5IGluc3RhbGxlZAojIGluc3RhbGwucGFja2FnZXMoImtuaXRyIikKbGlicmFyeShrbml0cikKCiMgQ3JlYXRlIGEgZGF0YSBmcmFtZSBmb3IgRGF0YSBUeXBlcwp2YXJpYWJsZXNfaW5mbyA8LSBkYXRhLmZyYW1lKAogIE5vID0gMTo1LAogIFZhcmlhYmxlID0gYygKICAgICJOdW1iZXIgb2YgdmVoaWNsZXMgcGFzc2luZyB0aHJvdWdoIHRoZSB0b2xsIHJvYWQgZWFjaCBkYXkiLAogICAgIlN0dWRlbnQgaGVpZ2h0IGluIGNtIiwKICAgICJFbXBsb3llZSBnZW5kZXIgKE1hbGUgLyBGZW1hbGUpIiwKICAgICJDdXN0b21lciBzYXRpc2ZhY3Rpb24gbGV2ZWw6IExvdywgTWVkaXVtLCBIaWdoIiwKICAgICJSZXNwb25kZW50J3MgZmF2b3JpdGUgY29sb3I6IFJlZCwgQmx1ZSwgR3JlZW4iCiAgKSwKICBEYXRhVHlwZSA9IGMoCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIiwKICAgICJZb3VyIEFuc3dlciIsCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIgogICksCiAgU3VidHlwZSA9IGMoCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIiwKICAgICJZb3VyIEFuc3dlciIsCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIgogICksCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFCikKCiMgRGlzcGxheSB0aGUgZGF0YSBmcmFtZSBhcyBhIG5lYXQgdGFibGUKa2FibGUodmFyaWFibGVzX2luZm8sIAogICAgICBjYXB0aW9uID0gIlRhYmxlIG9mIFZhcmlhYmxlcyBhbmQgRGF0YSBUeXBlcyIpCmBgYAotLS0KCiMjIEV4ZXJjaXNlIDMKCioqQ2xhc3NpZnkgRGF0YSBTb3VyY2VzOioqIERldGVybWluZSB3aGV0aGVyIHRoZSBmb2xsb3dpbmcgZGF0YSBjb21lcyBmcm9tICoqaW50ZXJuYWwqKiBvciAqKmV4dGVybmFsIHNvdXJjZXMqKiwgYW5kIHdoZXRoZXIgaXQgaXMgKipzdHJ1Y3R1cmVkKiogb3IgKip1bnN0cnVjdHVyZWQqKjoKCmBgYHtyfQojIEluc3RhbGwgRFQgcGFja2FnZSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQKIyBpbnN0YWxsLnBhY2thZ2VzKCJEVCIpCmxpYnJhcnkoRFQpCgojIENyZWF0ZSBhIGRhdGEgZnJhbWUgZm9yIGRhdGEgc291cmNlcyAKZGF0YV9zb3VyY2VzIDwtIGRhdGEuZnJhbWUoCiAgTm8gPSAxOjQsCiAgRGF0YVNvdXJjZSA9IGMoCiAgICAiRGFpbHkgc2FsZXMgdHJhbnNhY3Rpb24gZGF0YSBvZiB0aGUgY29tcGFueSIsCiAgICAiV2VhdGhlciByZXBvcnRzIGZyb20gQk1LRyIsCiAgICAiUHJvZHVjdCByZXZpZXdzIG9uIHNvY2lhbCBtZWRpYSIsCiAgICAiV2FyZWhvdXNlIGludmVudG9yeSByZXBvcnRzIgogICksCiAgSW50ZXJuYWxfRXh0ZXJuYWwgPSBjKAogICAgIllvdXIgQW5zd2VyIiwKICAgICJZb3VyIEFuc3dlciIsCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIgogICksCiAgU3RydWN0dXJlZF9VbnN0cnVjdHVyZWQgPSBjKAogICAgIllvdXIgQW5zd2VyIiwKICAgICJZb3VyIEFuc3dlciIsCiAgICAiWW91ciBBbnN3ZXIiLAogICAgIllvdXIgQW5zd2VyIgogICksCiAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFCikKCiMgRGlzcGxheSB0aGUgZGF0YSBmcmFtZSBhcyBhIG5lYXQgdGFibGUKZGF0YXRhYmxlKGRhdGFfc291cmNlcywgCiAgICAgICAgICBjYXB0aW9uID0gIlRhYmxlIG9mIERhdGEgU291cmNlcyIsCiAgICAgICAgICByb3duYW1lcyA9IEZBTFNFKSAjIGhpZGVzIHRoZSBpbmRleCBjb2x1bW4KYGBgCgotLS0KCiMjIEV4ZXJjaXNlIDQKCioqRGF0YXNldCBTdHJ1Y3R1cmU6KiogQ29uc2lkZXIgdGhlIGZvbGxvd2luZyB0cmFuc2FjdGlvbiB0YWJsZToKCnwgRGF0ZSAgICAgICB8IFF0eSB8IFByaWNlIHwgUHJvZHVjdCAgfCBDdXN0b21lclRpZXIgfAp8LS0tLS0tLS0tLS0tfC0tLS0tfC0tLS0tLS18LS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLXwKfCAyMDI1LTEwLTAxIHwgMiAgIHwgMTAwMCAgfCBMYXB0b3AgICB8IEhpZ2ggICAgICAgICB8CnwgMjAyNS0xMC0wMSB8IDUgICB8IDIwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfAp8IDIwMjUtMTAtMDIgfCAxICAgfCAxMDAwICB8IExhcHRvcCAgIHwgTG93ICAgICAgICAgIHwKfCAyMDI1LTEwLTAyIHwgMyAgIHwgMzAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8CnwgMjAyNS0xMC0wMyB8IDQgICB8IDUwICAgIHwgTW91c2UgICAgfCBNZWRpdW0gICAgICAgfAp8IDIwMjUtMTAtMDMgfCAyICAgfCAxMDAwICB8IExhcHRvcCAgIHwgSGlnaCAgICAgICAgIHwKfCAyMDI1LTEwLTA0IHwgNiAgIHwgMjUgICAgfCBLZXlib2FyZCB8IExvdyAgICAgICAgICB8CnwgMjAyNS0xMC0wNCB8IDEgICB8IDEwMDAgIHwgTGFwdG9wICAgfCBIaWdoICAgICAgICAgfAp8IDIwMjUtMTAtMDUgfCAzICAgfCA0MCAgICB8IE1vdXNlICAgIHwgTG93ICAgICAgICAgIHwKfCAyMDI1LTEwLTA1IHwgNSAgIHwgMTAgICAgfCBLZXlib2FyZCB8IE1lZGl1bSAgICAgICB8CgoKKipZb3VyIEFzc2lnbm1lbnQgSW5zdHJ1Y3Rpb25zOioqIENyZWF0aW5nIGEgVHJhbnNhY3Rpb25zIFRhYmxlIGFib3ZlIGluIFIKCjEuICoqQ3JlYXRlIGEgZGF0YSBmcmFtZSoqIGluIFIgY2FsbGVkIGB0cmFuc2FjdGlvbnNgIGNvbnRhaW5pbmcgdGhlIGRhdGEgYWJvdmUuCgoyLiBJZGVudGlmeSB3aGljaCB2YXJpYWJsZXMgYXJlIG51bWVyaWMgYW5kIHdoaWNoIGFyZSBjYXRlZ29yaWNhbAoKMy4gKipDYWxjdWxhdGUgdG90YWwgcmV2ZW51ZSoqIGZvciBlYWNoIHRyYW5zYWN0aW9uIGJ5IG11bHRpcGx5aW5nIGBRdHkgw5cgUHJpY2VgIGFuZCBhZGQgaXQgYXMgYSBuZXcgY29sdW1uIGBUb3RhbGAuCgo0LiAqKkNvbXB1dGUgc3VtbWFyeSBzdGF0aXN0aWNzKio6CiAgIC0gVG90YWwgcXVhbnRpdHkgc29sZCBmb3IgZWFjaCBwcm9kdWN0CiAgIC0gVG90YWwgcmV2ZW51ZSBwZXIgcHJvZHVjdAogICAtIEF2ZXJhZ2UgcHJpY2UgcGVyIHByb2R1Y3QKCjUuICoqVmlzdWFsaXplIHRoZSBkYXRhKio6CiAgIC0gQ3JlYXRlIGEgKipiYXJwbG90Kiogc2hvd2luZyB0b3RhbCBxdWFudGl0eSBzb2xkIHBlciBwcm9kdWN0LgogICAtIENyZWF0ZSBhICoqcGllIGNoYXJ0Kiogc2hvd2luZyB0aGUgcHJvcG9ydGlvbiBvZiB0b3RhbCByZXZlbnVlIHBlciBjdXN0b21lciB0aWVyLgoKNi4gKipPcHRpb25hbCBDaGFsbGVuZ2UqKjoKICAgLSBGaW5kIHdoaWNoICoqZGF0ZSoqIGhhZCB0aGUgaGlnaGVzdCB0b3RhbCByZXZlbnVlLgogICAtIENyZWF0ZSBhICoqc3RhY2tlZCBiYXIgY2hhcnQqKiBzaG93aW5nIHF1YW50aXR5IHNvbGQgcGVyIHByb2R1Y3QgYnkgY3VzdG9tZXIgdGllci4KCioqSGludHM6KiogVXNlIGBkYXRhLmZyYW1lKClgLCBgYWdncmVnYXRlKClgLCBgYmFycGxvdCgpYCwgYHBpZSgpYCwgYW5kIGJhc2ljIGFyaXRobWV0aWMgb3BlcmF0aW9ucyBpbiBSLgoKCiMjIEV4ZXJjaXNlIDUKCioqQ3JlYXRlIFlvdXIgT3duIERhdGEgRnJhbWU6KioKCioqT2JqZWN0aXZlOioqIENyZWF0ZSBhIGRhdGEgZnJhbWUgaW4gUiB3aXRoICoqMzAgcm93cyoqIGNvbnRhaW5pbmcgYSBtaXggb2YgZGF0YSB0eXBlczogY29udGludW91cywgZGlzY3JldGUsIG5vbWluYWwsIGFuZCBvcmRpbmFsLiAgCgojIyMgSW5zdHJ1Y3Rpb25zCgoxLiAqKk9wZW4gUlN0dWRpbyoqIG9yIHRoZSBSIGNvbnNvbGUuICAKCjIuICoqQ3JlYXRlIGEgdmVjdG9yIGZvciBlYWNoIGNvbHVtbioqIGluIHlvdXIgZGF0YSBmcmFtZTogIAoKICAgLSAqKkRhdGUqKjogMzAgZGF0ZXMgKGNhbiBiZSBzZXF1ZW50aWFsIG9yIHJhbmRvbSB3aXRoaW4gYSBtb250aC95ZWFyKSAgCiAgIC0gKipDb250aW51b3VzKio6IG51bWVyaWMgdmFsdWVzIHRoYXQgY2FuIHRha2UgZGVjaW1hbCB2YWx1ZXMgKGUuZy4sIGhlaWdodCwgd2VpZ2h0LCB0ZW1wZXJhdHVyZSkgIAogICAtICoqRGlzY3JldGUqKjogbnVtZXJpYyB2YWx1ZXMgdGhhdCBjYW4gb25seSB0YWtlIHdob2xlIG51bWJlcnMgKGUuZy4sIG51bWJlciBvZiBpdGVtcywgbnVtYmVyIG9mIHZlaGljbGVzKSAgCiAgIC0gKipOb21pbmFsKio6IGNhdGVnb3JpY2FsIHZhbHVlcyB3aXRoICoqbm8gb3JkZXIqKiAoZS5nLiwgY29sb3IsIGdlbmRlciwgY2l0eSkgIAogICAtICoqT3JkaW5hbCoqOiBjYXRlZ29yaWNhbCB2YWx1ZXMgd2l0aCBhICoqZGVmaW5lZCBvcmRlcioqIChlLmcuLCBMb3csIE1lZGl1bSwgSGlnaDsgQmVnaW5uZXIsIEludGVybWVkaWF0ZSwgRXhwZXJ0KSAgCgozLiAqKkNvbWJpbmUgYWxsIHZlY3RvcnMgaW50byBhIGRhdGEgZnJhbWUqKiBjYWxsZWQgYG15X2RhdGFgLiAgCgo0LiAqKkNoZWNrIHlvdXIgZGF0YSBmcmFtZSoqIHVzaW5nIGBoZWFkKClgIG9yIGBWaWV3KClgIHRvIGVuc3VyZSBpdCBoYXMgKiozMCByb3dzKiogYW5kIHRoZSBjb2x1bW5zIGFyZSBjb3JyZWN0LiAgCgo1LiAqKk9wdGlvbmFsIHRhc2tzKio6ICAKICAgLSBTdW1tYXJpemUgZWFjaCBjb2x1bW4gdXNpbmcgYHN1bW1hcnkoKWAgIAogICAtIENvdW50IHRoZSBmcmVxdWVuY3kgb2YgZWFjaCBjYXRlZ29yeSBmb3IgKipOb21pbmFsKiogYW5kICoqT3JkaW5hbCoqIGNvbHVtbnMgdXNpbmcgYHRhYmxlKClgICAKCiMjIyBIaW50cwoKLSBVc2UgYHNlcS5EYXRlKClgIG9yIGBhcy5EYXRlKClgIHRvIGdlbmVyYXRlIHRoZSBEYXRlIGNvbHVtbi4gIAotIFVzZSBgcnVuaWYoKWAgb3IgYHJub3JtKClgIGZvciBjb250aW51b3VzIG51bWVyaWMgZGF0YS4gIAotIFVzZSBgc2FtcGxlKClgIGZvciBkaXNjcmV0ZSwgbm9taW5hbCwgYW5kIG9yZGluYWwgZGF0YS4gIAotIEVuc3VyZSB0aGUgKipvcmRpbmFsIHZlY3RvcioqIGlzIGNyZWF0ZWQgd2l0aCBgZmFjdG9yKC4uLiwgbGV2ZWxzID0gYygiTG93IiwiTWVkaXVtIiwiSGlnaCIpLCBvcmRlcmVkID0gVFJVRSlgIChvciBzaW1pbGFyKS4gIAoKCgoKCg==