Simulasi GLM dengan Respon (Y) Normal

# Pembangkitan data simulasi

set.seed(1001)
n   <- 50
x   <- runif(n,1,6)
b0  <- 1.5
b1  <- 3.0
y   <- c(1:n)

for (i in 1:n) {y[i] <- rnorm(1,b0+b1*x[i],1)}

plot(x,y)

cbind(x,y)
##              x         y
##  [1,] 5.928444 18.690387
##  [2,] 3.063142  8.788586
##  [3,] 3.147696 11.136597
##  [4,] 3.095861 10.205783
##  [5,] 3.132533  9.352388
##  [6,] 5.438988 18.295776
##  [7,] 1.030480  4.820782
##  [8,] 1.406079  5.580310
##  [9,] 2.443287 11.240599
## [10,] 4.826711 14.057338
## [11,] 3.214621 12.806805
## [12,] 1.691815  8.696805
## [13,] 5.312370 17.248728
## [14,] 3.199381  8.976030
## [15,] 2.333304  8.776508
## [16,] 5.406457 17.093838
## [17,] 1.910408  7.777324
## [18,] 2.813841 10.097222
## [19,] 1.277501  4.628636
## [20,] 4.875929 16.089897
## [21,] 4.094598 14.488958
## [22,] 2.841569  8.300606
## [23,] 5.744559 18.955056
## [24,] 4.632981 15.874495
## [25,] 2.335107 11.890792
## [26,] 5.277346 16.321726
## [27,] 4.399038 12.892394
## [28,] 2.302577  6.787353
## [29,] 5.610446 19.242520
## [30,] 2.403594  8.972020
## [31,] 3.719502 13.239102
## [32,] 5.801831 17.864173
## [33,] 5.846162 20.198548
## [34,] 2.967490 12.549822
## [35,] 1.757231  6.125281
## [36,] 1.619432  5.427364
## [37,] 1.449286  6.633208
## [38,] 4.726190 15.212516
## [39,] 4.551734 14.827102
## [40,] 1.440019  6.735387
## [41,] 3.376266 13.318166
## [42,] 1.831106  8.666407
## [43,] 3.692393 13.376648
## [44,] 1.683731  7.917913
## [45,] 5.704839 17.750434
## [46,] 1.716915  5.218002
## [47,] 4.981152 16.002165
## [48,] 1.008779  3.946260
## [49,] 4.527118 13.109931
## [50,] 4.646557 17.004236