This homework assignment uses the flights
dataset from
the nycflights13
package, which contains real-world data on
over 336,000 flights departing from New York City airports (JFK, LGA,
EWR) in 2013. The dataset includes variables such as departure and
arrival times (with date components), airline carrier (categorical),
origin and destination airports (categorical), delays (with missing
values for cancelled flights), distance, and more. It is sourced from
the US Bureau of Transportation Statistics.
This assignment reinforces the Week 4 topics:
lubridate
.zoo
.All questions (except the final reflection) require you to write and run R code to solve them. Submit your URL for your RPubs. Make sure to comment your code, along with key outputs (e.g., summaries, plots, or tables). Use the provided setup code to load the data.
Install and load the necessary packages if not already done:
#install.packages(c("nycflights13", "dplyr", "lubridate", "zoo", "forcats")) # If needed
library(nycflights13)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(forcats) # For factor recoding; base R alternatives are acceptable
data(flights) # Load the dataset
Explore the data briefly with str(flights)
and
head(flights)
to understand the structure. Note: Dates are
in separate year
, month
, day
columns; times are in dep_time
and arr_time
(as integers like 517 for 5:17 AM).
#Explore your data here
str(flights)
## tibble [336,776 × 19] (S3: tbl_df/tbl/data.frame)
## $ year : int [1:336776] 2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
## $ month : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ day : int [1:336776] 1 1 1 1 1 1 1 1 1 1 ...
## $ dep_time : int [1:336776] 517 533 542 544 554 554 555 557 557 558 ...
## $ sched_dep_time: int [1:336776] 515 529 540 545 600 558 600 600 600 600 ...
## $ dep_delay : num [1:336776] 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
## $ arr_time : int [1:336776] 830 850 923 1004 812 740 913 709 838 753 ...
## $ sched_arr_time: int [1:336776] 819 830 850 1022 837 728 854 723 846 745 ...
## $ arr_delay : num [1:336776] 11 20 33 -18 -25 12 19 -14 -8 8 ...
## $ carrier : chr [1:336776] "UA" "UA" "AA" "B6" ...
## $ flight : int [1:336776] 1545 1714 1141 725 461 1696 507 5708 79 301 ...
## $ tailnum : chr [1:336776] "N14228" "N24211" "N619AA" "N804JB" ...
## $ origin : chr [1:336776] "EWR" "LGA" "JFK" "JFK" ...
## $ dest : chr [1:336776] "IAH" "IAH" "MIA" "BQN" ...
## $ air_time : num [1:336776] 227 227 160 183 116 150 158 53 140 138 ...
## $ distance : num [1:336776] 1400 1416 1089 1576 762 ...
## $ hour : num [1:336776] 5 5 5 5 6 5 6 6 6 6 ...
## $ minute : num [1:336776] 15 29 40 45 0 58 0 0 0 0 ...
## $ time_hour : POSIXct[1:336776], format: "2013-01-01 05:00:00" "2013-01-01 05:00:00" ...
head(flights)
## # A tibble: 6 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>
lubridate
Create a column dep_datetime by combining year, month, day, and
dep_time into a POSIXct datetime using lubridate. (Hint: Use
make_datetime
function to combine: year, month, day, for
hour and min use division, e.g., hour = dep_time %/% 100, minute =
dep_time %% 100.)
Show the first 5 rows of flights with dep_datetime.
Output: First 5 rows showing year, month, day, dep_time, and dep_datetime.
alt_flight <- flights |>
mutate(dep_datetime = make_datetime(year, month, day, hour = dep_time %% 100, minute == dep_time %% 100))
head(alt_flight, 5)
## # A tibble: 5 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, dep_datetime <dttm>
lubridate
Using dep_datetime from Question 1, create a column weekday with the day of the week (e.g., “Mon”) using wday(dep_datetime, label = TRUE). Use table() to show how many flights occur on each weekday.
Output: The table of flight counts by weekday.
weekday_flights <- alt_flight |>
mutate(weekday = wday(dep_datetime, label = TRUE))
# unique(weekday_flights)
table(weekday_flights$weekday)
##
## Sun Mon Tue Wed Thu Fri Sat
## 43926 44492 48107 48959 49192 48982 44863
# data.frame(weekday_flights)
Filter for flights from JFK (origin == “JFK”) and create a zoo time series of departure delays (dep_delay) by dep_datetime. Plot the time series (use plot()). (Hint: Use a subset to avoid memory issues, e.g., first 1000 JFK flights.)
Output: The time series plot.
flights_plot <- alt_flight |>
filter(origin == "JFK")
flights_plot_chart <- zoo(alt_flight$dep_delay, alt_flight$dep_datetime)
## Warning in zoo(alt_flight$dep_delay, alt_flight$dep_datetime): some methods for
## "zoo" objects do not work if the index entries in 'order.by' are not unique
plot(flights_plot_chart, main = "JFK flights", xlab = "dep_delay", ylab = "dep_datetime")
Convert the origin column (airports: “JFK”, “LGA”, “EWR”) to a factor called origin_factor. Show the factor levels with levels() and create a frequency table with table(). Make a bar plot of flights by airport using barplot().
Output: The levels, frequency table, and bar plot.
unique(flights$origin)
## [1] "EWR" "LGA" "JFK"
origin_flight <- flights |>
mutate(origin_factor = factor(origin))
levels(origin_flight$origin_factor)
## [1] "EWR" "JFK" "LGA"
# table(origin_flight$origin_factor)
barplot(table(origin_flight$origin_factor))
Recode origin_factor from Question 4 into a new column origin_recoded with full names: “JFK” to “Kennedy”, “LGA” to “LaGuardia”, “EWR” to “Newark” using fct_recode() or base R. Create a bar plot of the recoded factor.
Output: The new levels and bar plot.
library(forcats)
new_origin_flights <- origin_flight |>
mutate(stats = fct_recode(origin_factor,
"Newark Liberty International" = "EWR",
"JFK International" = "JFK",
"LaGuardia Airport" = "LGA"))
levels(new_origin_flights$stats)
## [1] "Newark Liberty International" "JFK International"
## [3] "LaGuardia Airport"
barplot(table(new_origin_flights$stats))
Count missing values in dep_delay and arr_delay using colSums(is.na(flights)). Impute missing dep_delay values with 0 (assuming no delay for cancelled flights) in a new column dep_delay_imputed. Create a frequency table of dep_delay_imputed for delays between -20 and 20 minutes (use filter() to subset).
Output: NA counts, and the frequency table for imputed delays.
colSums(is.na(flights))
## year month day dep_time sched_dep_time
## 0 0 0 8255 0
## dep_delay arr_time sched_arr_time arr_delay carrier
## 8255 8713 0 9430 0
## flight tailnum origin dest air_time
## 0 2512 0 0 9430
## distance hour minute time_hour
## 0 0 0 0
filtered_flights_ds <- flights |>
mutate(imputed_dep_delay = ifelse(is.na(dep_delay), 0, dep_delay)) |>
filter(imputed_dep_delay >= -20 & imputed_dep_delay <= 20)
table(filtered_flights_ds$imputed_dep_delay)
##
## -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8
## 37 19 81 110 162 408 498 901 1594 2727 5891 7875 11791
## -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
## 16752 20701 24821 24619 24218 21516 18813 24769 8050 6233 5450 4807 4447
## 6 7 8 9 10 11 12 13 14 15 16 17 18
## 3789 3520 3381 3062 2859 2756 2494 2414 2256 2140 2085 1873 1749
## 19 20
## 1730 1704
Reflect on the assignment: What was easy or hard about working with flight dates or missing data? How might assuming zero delay for missing values (Question 6) affect conclusions about flight punctuality? What did you learn about NYC flights in 2013? (150-200 words)
As I completed the homework, I found it easy while completing the first two questions by referring back to the Analyzing Tropical Storm Data practice to complete the questions, as well as looking at the given hints. I utilized the mutate function to create a new column storing specific information such as correctly formatting the time in a new column in question one while also utilizing functions from the lubridate library. However, one thing that was hard while completing the homework was remembering how to handle with NA data values and assigning each value containing NA to zero. When referring back to previous practice assignments, I couldn’t find a similar ifelse structure as the one I utilized in question 6, where I took all NA elements from dep_delay and assigned them as zero, followed with another dep_delay to set it to a new column imputed_dep_delay. Assuming zero delay for missing values might affect conclusions about flight punctuality by not account for any flights having undetermined delays without deleting the entire column which contains information about other flight’s delays, allowing the NA’s to be counted. I learned that NYC flights in 2013 all supposedly have the same origin according to the data chart, EWR, JFK, and LGA, flying to different destinations.