Parametre

a<-5
b<-4
a
b

(a+b)^2
x<-(a+b)^2

Logické hodnoty

a<-TRUE
b<-TRUE
a
b

(a|b)
(a&b)
(!a|b)

##Umocňovanie

(15^2 - 4) / 7
[1] 31.57143

Textové premenné

first <- "Barbora"                       
last  <- "Capeková"                          
full  <- paste(first, last)               
full_nospace <- paste0(first, last)       
csv_line <- paste("carrot", "tomato", "cabbage", sep = ",")   ,
first; last; full; full_nospace; csv_line   

Dĺžka textového reťazca, podreťazec

x <- "Today is Friday!"
nchar(x)                 
substr(x, 2, 7)          

Logické (boolovské) hodnoty a premenné

Základy


a<-TRUE
b<-TRUE
a
b

(a|b)
(a&b)
(!a|b)

## Zložitejšie logické operácie
y <- 20
y > 6 & y < 30      
y < 9 | y > 50     
                    

Zlučovanie viacerých log. premenných do vektora

values <- c(TRUE, FALSE, FALSE, TRUE)   

Numerické vektory

Generovanie vektorov

v1 <- c(1, 3, 5, 9)
v2 <- 2:7                  
v3 <- seq(from = 2, to = 6, by = 0.5)  
v4 <- rep(5, times = 8)    
v5 <- runif(6)             
v6 <- rnorm(4)             
v1; v2; v3; v4; v5; v6

Aritmetické operácie s vektormi

v <- c(2, 4, 6, 8)
v + 15         
v * 4            
(v + 2) / 2
exp(v)        
sum(c(2,2,2),c(1,3,5))          
c(2,4,6)*c(3,2,1)              

Indexovanie a výber niektorych prvkov vektora

x <- c(2, 4, 6, 8, 10, 12, 14)
x[3]           
x[3:6]         
x[-6]        
x[x > 15]      
which(x > 15)  

Práca s chýbajúcimi hodnotami

x <- c(2, NA, 4, NA, 6)
is.na(x)
mean(x)                 
mean(x, na.rm = TRUE)   

Základné štatistiky a usporiadanie prvkov vektora podľa veľkosti

w <- 1:20
sum(w[w %% 2 == 0])
[1] 110

Malé cvičenie

Vytvorte vektor w s číslami 1..20 a vypočítajte sumu všetkých párnych čísel.

w <- 1:20
sum(w[w %% 2 == 0])

#Riešenie
110

Matice

Vytvorenie matíc

m <- matrix(1:16, nrow = 4, ncol = 4)            
m_byrow <- matrix(1:16, nrow = 4, byrow = TRUE)  
m; m_byrow

Rozmery matice

dim(m)                  
m

Adresovanie prvkov matice

m[2, 4]      
m[ , 2]      
m[1, ]       
m[2:3, 3:4]  

Maticové operácie

M2 <- matrix(1:25, nrow = 5, byrow = TRUE)
colSums(M2)
[1] 55 60 65 70 75
t(M2) %*% M2
     [,1] [,2] [,3] [,4] [,5]
[1,]  855  910  965 1020 1075
[2,]  910  970 1030 1090 1150
[3,]  965 1030 1095 1160 1225
[4,] 1020 1090 1160 1230 1300
[5,] 1075 1150 1225 1300 1375

Malé cvičenie

Vytvorte maticu 5x5 s hodnotami po riadkoch 1..25, vypočítajte stĺpcové sumy a súčin matíc \(M^t M\).

numbers <- 1:50
sample(numbers, 5)   # vyberie 5 náhodných čísel z 1..50
[1]  2  7 45 38 21

##Moj návrh novinky

# Funkcia sample() – náhodný výber prvkov z vektora
numbers <- 1:50
sample(numbers, 5)   # vyberie 5 náhodných čísel z 1..50

This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

plot(cars)

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tCnRpdGxlOiAiWsOha2xhZG7DqSBvcGVyw6FjaWUgdiBSa3UiCmF1dGhvcjogIkJhcmJvcmEgQ2FwZWtvdsOhICA8YnI+CihzIHZ5dcW+aXTDrW0gQ2hhdEdQVCkiCmRhdGU6ICJTZXB0ZW1iZXIgMjAyNSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRoZW1lOiB1bml0ZWQKICAgIGhpZ2hsaWdodDogdGFuZ28KLS0tCiMjIFBhcmFtZXRyZQpgYGB7ciBlY2hvPVRSVUUsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0KYTwtNQpiPC00CmEKYgoKKGErYileMgp4PC0oYStiKV4yCmBgYAoKIyMgTG9naWNrw6kgaG9kbm90eQpgYGB7ciBlY2hvPVRSVUUsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0KYTwtVFJVRQpiPC1UUlVFCmEKYgoKKGF8YikKKGEmYikKKCFhfGIpCmBgYAoKIyNVbW9jxYhvdmFuaWUKYGBge3IgZWNobz1UUlVFLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9CmE8LTheMwoKIyMgTWFsw6kgY3ZpxI1lbmllCgo+IFZ5cG/EjcOtdGFqdGU6CgokJFxmcmFjeygxNV4yLTQpfXs3fSQkCigxNV4yIC0gNCkgLyA3CgojUmllxaFlbmllCjMxLDU3MTQzCmBgYAoKIyMgVGV4dG92w6kgcHJlbWVubsOpCmBgYHtyIGVjaG89VFJVRSwgbWVzc2FnZT1UUlVFLCB3YXJuaW5nPUZBTFNFfQpmaXJzdCA8LSAiQmFyYm9yYSIgICAgICAgICAgICAgICAgICAgICAgIApsYXN0ICA8LSAiQ2FwZWtvdsOhIiAgICAgICAgICAgICAgICAgICAgICAgICAgCmZ1bGwgIDwtIHBhc3RlKGZpcnN0LCBsYXN0KSAgICAgICAgICAgICAgIApmdWxsX25vc3BhY2UgPC0gcGFzdGUwKGZpcnN0LCBsYXN0KSAgICAgICAKY3N2X2xpbmUgPC0gcGFzdGUoImNhcnJvdCIsICJ0b21hdG8iLCAiY2FiYmFnZSIsIHNlcCA9ICIsIikgICAsCmZpcnN0OyBsYXN0OyBmdWxsOyBmdWxsX25vc3BhY2U7IGNzdl9saW5lICAgCmBgYAoKIyMgRMS6xb5rYSB0ZXh0b3bDqWhvIHJlxaVhemNhLCBwb2RyZcWlYXplYwpgYGB7ciBlY2hvPVRSVUUsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0KeCA8LSAiVG9kYXkgaXMgRnJpZGF5ISIKbmNoYXIoeCkgICAgICAgICAgICAgICAgIApzdWJzdHIoeCwgMiwgNykgICAgICAgICAgCmBgYAoKIyBMb2dpY2vDqSAoYm9vbG92c2vDqSkgaG9kbm90eSBhIHByZW1lbm7DqQojIyBaw6FrbGFkeQpgYGB7ciBlY2hvPVRSVUUsIG1lc3NhZ2U9VFJVRSwgd2FybmluZz1GQUxTRX0KCmE8LVRSVUUKYjwtVFJVRQphCmIKCihhfGIpCihhJmIpCighYXxiKQoKIyMgWmxvxb5pdGVqxaFpZSBsb2dpY2vDqSBvcGVyw6FjaWUKCmBgYHtyfQp5IDwtIDIwCnkgPiA2ICYgeSA8IDMwICAgICAgCnkgPCA5IHwgeSA+IDUwICAgICAKICAgICAgICAgICAgICAgICAgICAKYGBgCgojIyBabHXEjW92YW5pZSB2aWFjZXLDvWNoIGxvZy4gcHJlbWVubsO9Y2ggZG8gdmVrdG9yYQoKYGBge3IgZWNobz1UUlVFLCBtZXNzYWdlPVRSVUUsIHdhcm5pbmc9RkFMU0V9CnZhbHVlcyA8LSBjKFRSVUUsIEZBTFNFLCBGQUxTRSwgVFJVRSkgICAKYGBgCgojIE51bWVyaWNrw6kgdmVrdG9yeQojIyBHZW5lcm92YW5pZSB2ZWt0b3JvdgpgYGB7cn0KdjEgPC0gYygxLCAzLCA1LCA5KQp2MiA8LSAyOjcgICAgICAgICAgICAgICAgICAKdjMgPC0gc2VxKGZyb20gPSAyLCB0byA9IDYsIGJ5ID0gMC41KSAgCnY0IDwtIHJlcCg1LCB0aW1lcyA9IDgpICAgIAp2NSA8LSBydW5pZig2KSAgICAgICAgICAgICAKdjYgPC0gcm5vcm0oNCkgICAgICAgICAgICAgCnYxOyB2MjsgdjM7IHY0OyB2NTsgdjYKYGBgCgojIyBBcml0bWV0aWNrw6kgb3BlcsOhY2llIHMgdmVrdG9ybWkKYGBge3J9CnYgPC0gYygyLCA0LCA2LCA4KQp2ICsgMTUgICAgICAgICAKdiAqIDQgICAgICAgICAgICAKKHYgKyAyKSAvIDIKZXhwKHYpICAgICAgICAKc3VtKGMoMiwyLDIpLGMoMSwzLDUpKSAgICAgICAgICAKYygyLDQsNikqYygzLDIsMSkgICAgICAgICAgICAgIApgYGAKCiMjIEluZGV4b3ZhbmllIGEgdsO9YmVyIG5pZWt0b3J5Y2ggcHJ2a292IHZla3RvcmEKYGBge3J9CnggPC0gYygyLCA0LCA2LCA4LCAxMCwgMTIsIDE0KQp4WzNdICAgICAgICAgICAKeFszOjZdICAgICAgICAgCnhbLTZdICAgICAgICAKeFt4ID4gMTVdICAgICAgCndoaWNoKHggPiAxNSkgIApgYGAKCiMjIFByw6FjYSBzIGNow71iYWrDumNpbWkgaG9kbm90YW1pCmBgYHtyfQp4IDwtIGMoMiwgTkEsIDQsIE5BLCA2KQppcy5uYSh4KQptZWFuKHgpICAgICAgICAgICAgICAgICAKbWVhbih4LCBuYS5ybSA9IFRSVUUpICAgCmBgYAoKIyMgWsOha2xhZG7DqSDFoXRhdGlzdGlreSBhIHVzcG9yaWFkYW5pZSBwcnZrb3YgdmVrdG9yYSBwb2TEvmEgdmXEvmtvc3RpCmBgYHtyfQp4IDwtIGMoMTUsIDUsIDEwLCAyMCwgMjUpCm1lYW4oeCkgICAgICAgICAgICAgICAgIApzZCh4KSAgICAgICAgICAgICAgICAgIAptYXgoeCkgICAgICAgICAgICAgICAgICAKc3VtbWFyeSh4KSAgICAgICAgICAgICAgCnNvcnQoeCkgICAgICAgICAgICAgICAgICAKc29ydCh4LCBkZWNyZWFzaW5nID0gVFJVRSkgIApgYGAKCiMjIE1hbMOpIGN2acSNZW5pZQo+IFZ5dHZvcnRlIHZla3RvciBgd2AgcyDEjcOtc2xhbWkgMS4uMjAgYSB2eXBvxI3DrXRhanRlIHN1bXUgdsWhZXRrw71jaCBww6FybnljaCDEjcOtc2VsLgoKYGBge3J9CncgPC0gMToyMApzdW0od1t3ICUlIDIgPT0gMF0pCgojUmllxaFlbmllCjExMApgYGAKCiMgTWF0aWNlCiMjIFZ5dHZvcmVuaWUgbWF0w61jCmBgYHtyfQptIDwtIG1hdHJpeCgxOjE2LCBucm93ID0gNCwgbmNvbCA9IDQpICAgICAgICAgICAgCm1fYnlyb3cgPC0gbWF0cml4KDE6MTYsIG5yb3cgPSA0LCBieXJvdyA9IFRSVUUpICAKbTsgbV9ieXJvdwpgYGAKCiMjIFJvem1lcnkgbWF0aWNlCmBgYHtyfQpkaW0obSkgICAgICAgICAgICAgICAgICAKbQpgYGAKCiMjIEFkcmVzb3ZhbmllIHBydmtvdiBtYXRpY2UKYGBge3J9Cm1bMiwgNF0gICAgICAKbVsgLCAyXSAgICAgIAptWzEsIF0gICAgICAgCm1bMjozLCAzOjRdICAKYGBgCgojIyBNYXRpY292w6kgb3BlcsOhY2llCmBgYHtyfQpBIDwtIG1hdHJpeChjKDEsMyw1LDcpLCBucm93ID0gMikKQiA8LSBtYXRyaXgoYygyLDQsNiw4KSwgbnJvdyA9IDIpCgpBICsgQiAgICAgICAgCkEgKiBCICAgICAgICAKQSAlKiUgQiAgICAgIAp0KEEpICAgICAgICAgCmRldChBKSAgICAgICAKc29sdmUoQSkgICAgIApgYGAKCiMjIE1hbMOpIGN2acSNZW5pZQo+IFZ5dHZvcnRlIG1hdGljdSA1eDUgcyBob2Rub3RhbWkgcG8gcmlhZGtvY2ggMS4uMjUsIHZ5cG/EjcOtdGFqdGUgc3TEunBjb3bDqSBzdW15IGEgc8O6xI1pbiBtYXTDrWMgXChNXnQgTVwpLgoKYGBge3J9Ck0yIDwtIG1hdHJpeCgxOjI1LCBucm93ID0gNSwgYnlyb3cgPSBUUlVFKQpjb2xTdW1zKE0yKQp0KE0yKSAlKiUgTTIKCiNSaWXFoWVuaWUKICAgWywxXSBbLDJdIFssM10gWyw0XSBbLDVdClsxLF0gIDg1NSAgOTEwICA5NjUgMTAyMCAxMDc1ClsyLF0gIDkxMCAgOTcwIDEwMzAgMTA5MCAxMTUwClszLF0gIDk2NSAxMDMwIDEwOTUgMTE2MCAxMjI1Cls0LF0gMTAyMCAxMDkwIDExNjAgMTIzMCAxMzAwCls1LF0gMTA3NSAxMTUwIDEyMjUgMTMwMCAxMzc1CmBgYAoKIyNNb2ogbsOhdnJoIG5vdmlua3kKYGBge3J9CiMgRnVua2NpYSBzYW1wbGUoKSDigJMgbsOhaG9kbsO9IHbDvWJlciBwcnZrb3YgeiB2ZWt0b3JhCm51bWJlcnMgPC0gMTo1MApzYW1wbGUobnVtYmVycywgNSkgICAjIHZ5YmVyaWUgNSBuw6Fob2Ruw71jaCDEjcOtc2VsIHogMS4uNTAKCmBgYAoKLS0tCgpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiAKClRyeSBleGVjdXRpbmcgdGhpcyBjaHVuayBieSBjbGlja2luZyB0aGUgKlJ1biogYnV0dG9uIHdpdGhpbiB0aGUgY2h1bmsgb3IgYnkgcGxhY2luZyB5b3VyIGN1cnNvciBpbnNpZGUgaXQgYW5kIHByZXNzaW5nICpDdHJsK1NoaWZ0K0VudGVyKi4gCgpgYGB7cn0KcGxvdChjYXJzKQpgYGAKCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDdHJsK0FsdCtJKi4KCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLgoKVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLgo=