Quarto Demo
Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org .
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Graphs
ggplot (mtcars, aes (x= mpg, y= hp, color = cyl)) +
geom_point () +
theme_classic () +
labs (x = 'Miles Per Gallon' , y = 'Horse Power' , color = 'Cylinders' )
Table
kable (head (mtcars), digits= 1 )
Mazda RX4
21.0
6
160
110
3.9
2.6
16.5
0
1
4
4
Mazda RX4 Wag
21.0
6
160
110
3.9
2.9
17.0
0
1
4
4
Datsun 710
22.8
4
108
93
3.9
2.3
18.6
1
1
4
1
Hornet 4 Drive
21.4
6
258
110
3.1
3.2
19.4
1
0
3
1
Hornet Sportabout
18.7
8
360
175
3.1
3.4
17.0
0
0
3
2
Valiant
18.1
6
225
105
2.8
3.5
20.2
1
0
3
1
Statistics
mod <- lm (mpg ~ am + cyl * hp, data= mtcars)
summary (mod)
Call:
lm(formula = mpg ~ am + cyl * hp, data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-4.2202 -1.5052 -0.2882 1.0368 5.9707
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.113013 6.059124 7.280 7.86e-08 ***
am 3.760837 1.199249 3.136 0.00411 **
cyl -2.911001 0.943814 -3.084 0.00467 **
hp -0.178592 0.060300 -2.962 0.00631 **
cyl:hp 0.018541 0.007691 2.411 0.02301 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.593 on 27 degrees of freedom
Multiple R-squared: 0.8388, Adjusted R-squared: 0.8149
F-statistic: 35.13 on 4 and 27 DF, p-value: 2.451e-10
mod |>
broom:: tidy () |>
kable (digits = 3 )
(Intercept)
44.113
6.059
7.280
0.000
am
3.761
1.199
3.136
0.004
cyl
-2.911
0.944
-3.084
0.005
hp
-0.179
0.060
-2.962
0.006
cyl:hp
0.019
0.008
2.411
0.023
Writing some stats.
t_test <- t.test (mtcars$ mpg[mtcars$ am == 0 ],
mtcars$ mpg[mtcars$ am == 1 ])
t_test
Welch Two Sample t-test
data: mtcars$mpg[mtcars$am == 0] and mtcars$mpg[mtcars$am == 1]
t = -3.7671, df = 18.332, p-value = 0.001374
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.280194 -3.209684
sample estimates:
mean of x mean of y
17.14737 24.39231
There is a statistically significant difference in mpg between automatic and manual cars t (18.33) = -3.77, p = 0.001.