#Q3
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(iris$Petal.Length))
## [1] 0
#Q4
sum(complete.cases(dirty_iris))
## [1] 96
mean(complete.cases(dirty_iris)) * 100
## [1] 64
#Q5
num_cols <- sapply(dirty_iris, is.numeric)
sapply(dirty_iris[, num_cols], function(x) {
c(
NA_count = sum(is.na(x)),
NaN_count = sum(is.nan(x)),
Inf_count = sum(is.infinite(x))
)
})
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## NA_count 10 17 19 12
## NaN_count 0 0 0 0
## Inf_count 0 0 0 1
#Q6
dirty_iris[, num_cols][is.nan(as.matrix(dirty_iris[, num_cols]))] <- NA
dirty_iris[, num_cols][is.infinite(as.matrix(dirty_iris[, num_cols]))] <- NA
sapply(dirty_iris[, num_cols], function(x) {
c(
NA_count = sum(is.na(x)),
NaN_count = sum(is.nan(x)),
Inf_count = sum(is.infinite(x))
)
})
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## NA_count 10 17 19 13
## NaN_count 0 0 0 0
## Inf_count 0 0 0 0
#Q7
violations <- subset(dirty_iris, Sepal.Width <= 0 | Sepal.Length > 30)
violations
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 28 73.0 29 63.0 NA virginica
## 125 49.0 30 14.0 2.0 setosa
## 130 5.7 0 1.7 0.3 setosa
nrow(violations)
## [1] 4
#Q8
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)] <-
abs(dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)])
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width == 0)] <- NA
dirty_iris[which(dirty_iris$Sepal.Width <= 0 | is.na(dirty_iris$Sepal.Width)), "Sepal.With"]
## NULL
#Q9
# --- 1. Sepal.Width: mean imputation ---
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <-
mean(dirty_iris$Sepal.Width, na.rm = TRUE)
# --- 2. Petal.Length: median imputation ---
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <-
median(dirty_iris$Petal.Length, na.rm = TRUE)
# --- 3. Sepal.Length: linear regression imputation ---
lm_model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data = dirty_iris, na.action = na.exclude)
predicted <- predict(lm_model, newdata = dirty_iris)
dirty_iris$Sepal.Length[is.na(dirty_iris$Sepal.Length)] <-
predicted[is.na(dirty_iris$Sepal.Length)]
# --- 4. Petal.Width: kNN imputation ---
colSums(is.na(dirty_iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 13 0