The pages represent information-dense processing - the kind that ELM says will lead to enduring, stable attitude change.
The organization’s pages do persuade some people into supporting the legalization of marijuana the longer that they look around on the pages.
Variables & method: Logistic regression. Sample of people who are undecided about legalizing marijuana. DV: Oppose (0) or support (1) legalizing marijuana after six months have passed.
IV: Number of minutes, out of 30, spent reading dense persuasive info on the web site..
The Logistic Regression plot demonstrates that as people spend more time on the web pages, they end up having a higher chance of supporting legalizing marijuana. This is shown from the upward movement of the line.
## `geom_smooth()` using formula = 'y ~ x'
| Linearity of the Logit Test (Box-Tidwell) | |||
| Interaction term indicates violation if significant | |||
| term | Estimate | Std_Error | P_Value |
|---|---|---|---|
| (Intercept) | −2.566 | 1.100 | 0.0196 |
| IV | 0.262 | 0.290 | 0.3657 |
| IV_log | −0.032 | 0.078 | 0.6869 |
The linearity table also shows this as the Box-Tidwell method gives us a p-value of 0.6869 on the IV_log, which demonstrates that there are no violations in the information that we are given.
# Install and load required packages
# ------------------------------
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("plotly")) install.packages("plotly")
library(ggplot2)
library(dplyr)
library(gt)
library(gtExtras)
library(plotly)
# ------------------------------
# Read the data
# ------------------------------
mydata <- read.csv("ELM.csv") # <-- EDIT filename
# ################################################
# # (Optional) Remove specific case(es)s by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line
# Specify dependent (DV) and independent (IV) variables
mydata$DV <- mydata$Favor_1 # <-- EDIT DV column
mydata$IV <- mydata$Minutes # <-- EDIT IV column
# Ensure DV is binary numeric (0/1)
mydata$DV <- as.numeric(as.character(mydata$DV))
# ------------------------------
# Logistic regression plot
# ------------------------------
logit_plot <- ggplot(mydata, aes(x = IV, y = DV)) +
geom_point(alpha = 0.5) + # scatterplot of observed data
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = FALSE,
color = "#1f78b4") +
labs(title = "Logistic Regression Curve",
x = "Independent Variable (IV)",
y = "Dependent Variable (DV)")
logit_plotly <- ggplotly(logit_plot)
# ------------------------------
# Run logistic regression
# ------------------------------
options(scipen = 999)
log.ed <- glm(DV ~ IV, data = mydata, family = "binomial")
# Extract coefficients and odds ratios
results <- broom::tidy(log.ed, conf.int = TRUE, exponentiate = TRUE) %>%
select(term, estimate, conf.low, conf.high, p.value) %>%
rename(Odds_Ratio = estimate,
CI_Lower = conf.low,
CI_Upper = conf.high,
P_Value = p.value)
# Display results as a nice gt table
results_table <- results %>%
gt() %>%
fmt_number(columns = c(Odds_Ratio, CI_Lower, CI_Upper), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Logistic Regression Results",
subtitle = "Odds Ratios with 95% Confidence Intervals"
)
# ------------------------------
# Check linearity of the logit (Box-Tidwell test)
# ------------------------------
# (Assumes IV > 0; shift IV if needed)
mydata$IV_log <- mydata$IV * log(mydata$IV)
linearity_test <- glm(DV ~ IV + IV_log, data = mydata, family = "binomial")
linearity_results <- broom::tidy(linearity_test) %>%
select(term, estimate, std.error, p.value) %>%
rename(Estimate = estimate,
Std_Error = std.error,
P_Value = p.value)
linearity_table <- linearity_results %>%
gt() %>%
fmt_number(columns = c(Estimate, Std_Error), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Linearity of the Logit Test (Box-Tidwell)",
subtitle = "Interaction term indicates violation if significant"
)
# ------------------------------
# Calculate the inflection point (p = .50)
# ------------------------------
p <- 0.50
Inflection_point <- (log(p/(1-p)) - coef(log.ed)[1]) / coef(log.ed)[2]
inflection_table <- tibble(
Probability = 0.5,
Inflection_Point = Inflection_point
) %>%
gt() %>%
fmt_number(columns = Inflection_Point, decimals = 3) %>%
tab_header(
title = "Inflection Point of Logistic Curve",
subtitle = "Value of IV where predicted probability = 0.50"
)
# ------------------------------
# Outputs
# ------------------------------
# Interactive plot
logit_plotly
# Tables
results_table
linearity_table
inflection_table