Question 1
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
Question 2
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
Question 3
sum(complete.cases(dirty_iris))
## [1] 96
Question 4
mean(complete.cases(dirty_iris)) * 100
## [1] 64
Question 5
summary(dirty_iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. : 0.000 Min. :-3.000 Min. : 0.00 Min. :0.1
## 1st Qu.: 5.100 1st Qu.: 2.800 1st Qu.: 1.60 1st Qu.:0.3
## Median : 5.750 Median : 3.000 Median : 4.50 Median :1.3
## Mean : 6.559 Mean : 3.391 Mean : 4.45 Mean :Inf
## 3rd Qu.: 6.400 3rd Qu.: 3.300 3rd Qu.: 5.10 3rd Qu.:1.8
## Max. :73.000 Max. :30.000 Max. :63.00 Max. :Inf
## NA's :10 NA's :17 NA's :19 NA's :12
## Species
## Length:150
## Class :character
## Mode :character
##
##
##
##
Question 6
dirty_iris[dirty_iris == Inf] <- NA
Question 7
violations <- which(dirty_iris$Sepal.Width <= 0 | dirty_iris$Sepal.Length > 30)
dirty_iris[violations, ]
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 28 73.0 29 63.0 NA virginica
## 125 49.0 30 14.0 2.0 setosa
## 130 5.7 0 1.7 0.3 setosa
length(violations)
## [1] 4
Question 8
dirty_iris$Sepal.Width <- as.numeric(dirty_iris$Sepal.Width)
dirty_iris$Sepal.Width[dirty_iris$Sepal.Width < 0 & !is.na(dirty_iris$Sepal.Width)] <-
abs(dirty_iris$Sepal.Width[dirty_iris$Sepal.Width < 0 & !is.na(dirty_iris$Sepal.Width)])
dirty_iris$Sepal.Width[dirty_iris$Sepal.Width == 0 & !is.na(dirty_iris$Sepal.Width)] <- NA
summary(dirty_iris$Sepal.Width)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.200 2.800 3.000 3.462 3.300 30.000 18
Question 9
mean_sw <- mean(dirty_iris$Sepal.Width, na.rm = TRUE)
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <- mean_sw
median_pl <- median(dirty_iris$Petal.Length, na.rm = TRUE)
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <- median_pl
lm_model <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,
data = dirty_iris, na.action = na.omit)
library("VIM")
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
dirty_iris <- kNN(dirty_iris)