#Question 3
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
#Question 4
num_complete <- sum(complete.cases(dirty_iris))
perc_complete <- mean(complete.cases(dirty_iris))*100
#Question 5
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
colSums(is.na(dirty_iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 10 17 19 12 0
colSums(sapply(dirty_iris, function(x) is.nan(x)))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 0 0
colSums(sapply(dirty_iris, function(x) is.infinite(x)))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 1 0
which(sapply(dirty_iris$Sepal.Length, is.nan))
## integer(0)
which(sapply(dirty_iris$Sepal.Width, is.nan))
## integer(0)
which(sapply(dirty_iris$Petal.Length, is.nan))
## integer(0)
which(sapply(dirty_iris$Petal.Width, is.nan))
## integer(0)
#Question 6
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
is.nan(dirty_iris$Sepal.Length)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE
is.nan(dirty_iris$Sepal.Width)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE
is.nan(dirty_iris$Petal.Length)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE
is.nan(dirty_iris$Petal.Width)
## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [145] FALSE FALSE FALSE FALSE FALSE FALSE
dirty_iris$Sepal.Length[is.nan(dirty_iris$Sepal.Length)] <- NA
dirty_iris$Sepal.Width[is.nan(dirty_iris$Sepal.Width)] <- NA
dirty_iris$Petal.Length[is.nan(dirty_iris$Petal.Length)] <- NA
dirty_iris$Petal.Width[is.nan(dirty_iris$Petal.Width)] <- NA
summary(dirty_iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Min. : 0.000 Min. :-3.000 Min. : 0.00 Min. :0.1
## 1st Qu.: 5.100 1st Qu.: 2.800 1st Qu.: 1.60 1st Qu.:0.3
## Median : 5.750 Median : 3.000 Median : 4.50 Median :1.3
## Mean : 6.559 Mean : 3.391 Mean : 4.45 Mean :Inf
## 3rd Qu.: 6.400 3rd Qu.: 3.300 3rd Qu.: 5.10 3rd Qu.:1.8
## Max. :73.000 Max. :30.000 Max. :63.00 Max. :Inf
## NA's :10 NA's :17 NA's :19 NA's :12
## Species
## Length:150
## Class :character
## Mode :character
##
##
##
##
#Question 7
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
violations <- subset(dirty_iris, Sepal.Width <= 0 | Sepal.Length > 30)
violations
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 16 5.0 -3 3.5 1.0 versicolor
## 28 73.0 29 63.0 NA virginica
## 125 49.0 30 14.0 2.0 setosa
## 130 5.7 0 1.7 0.3 setosa
nrow(violations)
## [1] 4
#Question 8
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
dirty_iris$Sepal.Width <- as.numeric(dirty_iris$Sepal.Width)
dirty_iris$Sepal.Width[which(!is.na(dirty_iris$Sepal.Width) & dirty_iris$Sepal.Width < 0)] <-
abs(dirty_iris$Sepal.Width[which(!is.na(dirty_iris$Sepal.Width) & dirty_iris$Sepal.Width < 0)])
dirty_iris$Sepal.Width[dirty_iris$Sepal.Width == 0] <- NA
summary(dirty_iris$Sepal.Width)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 2.200 2.800 3.000 3.462 3.300 30.000 18
#Question 9
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
dirty_iris$Sepal.Length <- as.numeric(dirty_iris$Sepal.Length)
dirty_iris$Sepal.Width <- as.numeric(dirty_iris$Sepal.Width)
dirty_iris$Petal.Length <- as.numeric(dirty_iris$Petal.Length)
dirty_iris$Petal.Width <- as.numeric(dirty_iris$Petal.Width)
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <-
mean(dirty_iris$Sepal.Width, na.rm = TRUE)
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <-
median(dirty_iris$Petal.Length, na.rm = TRUE)