Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age, team, year, medalist)
print(df)
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2<- df|>
filter(year %in% c(2008, 2012, 2016))
print(df2)
## # A tibble: 2,703 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 2 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 3 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 4 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 5 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 6 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 7 Katja Abel F 25 Germany 2008 FALSE
## 8 Katja Abel F 25 Germany 2008 FALSE
## 9 Katja Abel F 25 Germany 2008 FALSE
## 10 Katja Abel F 25 Germany 2008 FALSE
## # ℹ 2,693 more rows
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
age_summary<- df2|>
group_by(year) |>
summarise(mean_age = mean(age))
print(age_summary)
## # A tibble: 3 × 2
## year mean_age
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year<- olympic_gymnasts|>
group_by(year)|>
summarise(mean_age2 = mean(age))
print(oly_year)
## # A tibble: 29 × 2
## year mean_age2
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure Summarize the female participants across the years in the olympic team
# Your R code here
my_question <- df|>
group_by(year)|>
filter(sex== "F")|>
summarise(count = n())
print(my_question)
## # A tibble: 20 × 2
## year count
## <dbl> <int>
## 1 1928 35
## 2 1936 64
## 3 1948 72
## 4 1952 898
## 5 1956 418
## 6 1960 716
## 7 1964 474
## 8 1968 587
## 9 1972 704
## 10 1976 502
## 11 1980 358
## 12 1984 379
## 13 1988 522
## 14 1992 532
## 15 1996 576
## 16 2000 502
## 17 2004 507
## 18 2008 433
## 19 2012 382
## 20 2016 383
ggplot(my_question, aes(x= year, y = count)) +
geom_point(color = "purple")+
geom_line(color = "pink")
labs(
title = "Number of Female Athletes per Year"
)
## <ggplot2::labels> List of 1
## $ title: chr "Number of Female Athletes per Year"
print(my_question)
## # A tibble: 20 × 2
## year count
## <dbl> <int>
## 1 1928 35
## 2 1936 64
## 3 1948 72
## 4 1952 898
## 5 1956 418
## 6 1960 716
## 7 1964 474
## 8 1968 587
## 9 1972 704
## 10 1976 502
## 11 1980 358
## 12 1984 379
## 13 1988 522
## 14 1992 532
## 15 1996 576
## 16 2000 502
## 17 2004 507
## 18 2008 433
## 19 2012 382
## 20 2016 383
Discussion: Enter your discussion of results here. For this question I wanted to see a trend of the female participation in the olympic team across the years. So first I filtered the data to see only female participants and then grouped by year, and lastly summarized by count. I wanted to play with ggplot as well because I do not come from Data 101, and I am a visual learner so I am looking forward to learn more about this.