Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success with medals
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2 <- df |>
subset(year %in% c(2008,2012,2016))
df2
## # A tibble: 2,703 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 2 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 3 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 4 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 5 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 6 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 7 Katja Abel F 25 Germany 2008 FALSE
## 8 Katja Abel F 25 Germany 2008 FALSE
## 9 Katja Abel F 25 Germany 2008 FALSE
## 10 Katja Abel F 25 Germany 2008 FALSE
## # ℹ 2,693 more rows
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
df2_year <- df2 |>
group_by(year) |> # group_by to group to separate specific years into one group
summarise(average_age =mean(age)) # summarise the average age of each year
df2_year
## # A tibble: 3 × 2
## year average_age
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
df2 |>
summarise(average_age =mean(age)) # summarise the average age of entire dataSet
## # A tibble: 1 × 1
## average_age
## <dbl>
## 1 21.9
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
df3 <- df|>
group_by(year)
only_year <- df3|>
summarise(mean_age = mean(age))
only_year
## # A tibble: 29 × 2
## year mean_age
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
min_avrg_age <- min(only_year$mean_age)
min_avrg_age
## [1] 19.86606
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
My Question Find the maximum age in the entire dataset, then filter the dataset to include only ages between 18 and 25. After filtering, confirm the maximum age within this group and calculate the average age for each year
# Your R code here
max_age <- max(df3$age)
filtered_age <- df3 |>
filter(age >= 18 & age <= 25) |>
summarise( max_age <- max(age), filtered_avg_age = mean(age))
max_age
## [1] 49
filtered_age
## # A tibble: 29 × 3
## year `max_age <- max(age)` filtered_avg_age
## <dbl> <dbl> <dbl>
## 1 1896 25 21.4
## 2 1900 25 22.1
## 3 1904 25 22.6
## 4 1906 25 22.4
## 5 1908 25 21.5
## 6 1912 25 21.9
## 7 1920 25 22.5
## 8 1924 25 23.1
## 9 1928 25 21.9
## 10 1932 25 22.3
## # ℹ 19 more rows
Discussion: My goal for this question was to gain a better understanding of how to use the pipe operator “|>”. By calculating the maximum age of the entire dataset and then filtering it to include only participants aged 18 to 25, I was able to gain meaningful insight into the ages of the gymnasts. I successfully applied “filter()” and “summarise()” to calculate both the maximum and average ages. One challenge I encountered was trying to assign variables inside the pipeline, which I resolved by performing the calculations directly within “summarise()”. Overall, this exercise improved my understanding of data transformations and how to chain operations efficiently in R.