This study uses eye-tracking data to test the Elaboration Likelihood Model which predicts that cognitively processing “high quality” persuasive information produces long-term attitude change.
We use logistic regression to see if time spent viewing content predicts whether or not participants favor legalization of marijuana.
Participants that spend more time viewing “high quality” persuasive information will be more likely to favor the legalization of marijuana.
The Dependent Variable in this method is whether a participant favored (1) or opposed (0) legalizing recreational marijuana in Tennessee.
The Independent Variable in this method is the amount of time, in minutes, the respondent spent looking at “high quality” persuasive information.
We used logistic regression to test whether time spent on high-quality information predicts favoring legalization of recreational marijuana.
The logistic regression showed us that more time spent viewing high quality content resulted in a higher likelihood of central processing.
| Logistic Regression Results | ||||
| Odds Ratios with 95% Confidence Intervals | ||||
| term | Odds_Ratio | CI_Lower | CI_Upper | P_Value |
|---|---|---|---|---|
| (Intercept) | 0.099 | 0.044 | 0.205 | 0.0000 |
| IV | 1.167 | 1.116 | 1.227 | 0.0000 |
The results seen here suggest that time spent viewing high quality information was positively related to the support of marijuana legalization. As seen in the graph, the more time spent watching information, the more likely the subject will support legalization. These results support the Elaboration Likelihood Model.
# ------------------------------
# Install and load required packages
# ------------------------------
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("plotly")) install.packages("plotly")
library(ggplot2)
library(dplyr)
library(gt)
library(gtExtras)
library(plotly)
# ------------------------------
# Read the data
# ------------------------------
mydata <- read.csv("ELM.csv") # <-- EDIT filename
# ################################################
# # (Optional) Remove specific case(es)s by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line
# Specify dependent (DV) and independent (IV) variables
mydata$DV <- mydata$Favor_1 # <-- EDIT DV column
mydata$IV <- mydata$Minutes # <-- EDIT IV column
# Ensure DV is binary numeric (0/1)
mydata$DV <- as.numeric(as.character(mydata$DV))
# ------------------------------
# Logistic regression plot
# ------------------------------
logit_plot <- ggplot(mydata, aes(x = IV, y = DV)) +
geom_point(alpha = 0.5) + # scatterplot of observed data
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = FALSE,
color = "#1f78b4") +
labs(title = "Logistic Regression Curve",
x = "Independent Variable (IV)",
y = "Dependent Variable (DV)")
logit_plotly <- ggplotly(logit_plot)
# ------------------------------
# Run logistic regression
# ------------------------------
options(scipen = 999)
log.ed <- glm(DV ~ IV, data = mydata, family = "binomial")
# Extract coefficients and odds ratios
results <- broom::tidy(log.ed, conf.int = TRUE, exponentiate = TRUE) %>%
select(term, estimate, conf.low, conf.high, p.value) %>%
rename(Odds_Ratio = estimate,
CI_Lower = conf.low,
CI_Upper = conf.high,
P_Value = p.value)
# Display results as a nice gt table
results_table <- results %>%
gt() %>%
fmt_number(columns = c(Odds_Ratio, CI_Lower, CI_Upper), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Logistic Regression Results",
subtitle = "Odds Ratios with 95% Confidence Intervals"
)
# ------------------------------
# Check linearity of the logit (Box-Tidwell test)
# ------------------------------
# (Assumes IV > 0; shift IV if needed)
mydata$IV_log <- mydata$IV * log(mydata$IV)
linearity_test <- glm(DV ~ IV + IV_log, data = mydata, family = "binomial")
linearity_results <- broom::tidy(linearity_test) %>%
select(term, estimate, std.error, p.value) %>%
rename(Estimate = estimate,
Std_Error = std.error,
P_Value = p.value)
linearity_table <- linearity_results %>%
gt() %>%
fmt_number(columns = c(Estimate, Std_Error), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Linearity of the Logit Test (Box-Tidwell)",
subtitle = "Interaction term indicates violation if significant"
)
# ------------------------------
# Calculate the inflection point (p = .50)
# ------------------------------
p <- 0.50
Inflection_point <- (log(p/(1-p)) - coef(log.ed)[1]) / coef(log.ed)[2]
inflection_table <- tibble(
Probability = 0.5,
Inflection_Point = Inflection_point
) %>%
gt() %>%
fmt_number(columns = Inflection_Point, decimals = 3) %>%
tab_header(
title = "Inflection Point of Logistic Curve",
subtitle = "Value of IV where predicted probability = 0.50"
)
# ------------------------------
# Outputs
# ------------------------------
# Interactive plot
logit_plotly
# Tables
results_table
linearity_table
inflection_table