Student Body Separated by State
StudentState=gusd%>%group_by(State)%>%summarize(Count=length(State))%>%filter(!is.na(State))
GeoStates <- gvisGeoChart(StudentState, "State", "Count",
options=list(region="US",
displayMode="regions",
resolution="provinces",
width=600, height=400,colorAxis="{colors:['lightblue', 'blue', 'red','green','orange']}"))
plot(GeoStates)
Military Student Enrollment
Mil=gumil%>%group_by(State)%>%summarize(Count=length(State))%>%filter(!is.na(State))
head(Mil[order(-Mil$Count),],20)%>%dimple(x ="State", y = "Count", type = "bar",width=1000, height=750) %>%
xAxis(type = "addCategoryAxis") %>%
add_title( html = "<h4>Military Student Personel Enrollment By State</h4>")
Mean GPA of Military vs Non Military
milvnon1=gusd%>%group_by(State, Status)%>%summarise(Ave.GPA=mean(GPA))%>%
filter(!is.na(Ave.GPA))
dimple(data = milvnon1,
x = c("State","Status"), y = "Ave.GPA",
groups = "Status", type = "bar", width = 950, height = 600
) %>%
add_legend( x = 50, y = 10, width = 100, height = 50,
horizontalAlign = "left"
) %>%
default_colors()
Mean GPA of Students - State
SGPA1=gusd%>%group_by(State)%>%summarise(Ave.GPA=mean(GPA))%>%filter(!is.na(Ave.GPA))
SGPA1=data.frame(SGPA1)
GeoStates1 <- gvisGeoChart(SGPA1, "State",colorvar = "Ave.GPA",
options=list(title = "Mill Score vs State", region="US", displayMode="regions", resolution="provinces",colorAxis="{colors:['gold','blue']}", width=600, height=400))
GeoTable1 <- gvisTable(SGPA1,
options=list(width=220, height=300))
GT1 <- gvisMerge(GeoStates1,GeoTable1, horizontal=TRUE)
plot(GT1)
Military vs Non Military - Mean Miller Scores
milvnon2=gusd%>%group_by(State, Status)%>%summarise(AVE.MIL=mean(MILLER.ANALOGIES.RAW.SCORE))%>%
filter(!is.na(AVE.MIL))
dimple(data = milvnon2,
x = c("State","Status"), y = "AVE.MIL",
groups = "Status", type = "bar", width = 950, height = 600
) %>%
add_legend( x = 50, y = 10, width = 100, height = 50,
horizontalAlign = "left"
) %>%
default_colors()
Mean Miller Score of Students - State
SMIL=gusd%>%group_by(State)%>%summarise(AVE.MIL=mean(MILLER.ANALOGIES.RAW.SCORE))%>%
filter(!is.na(AVE.MIL))
SMIL=data.frame(SMIL)
GeoStates2 <- gvisGeoChart(SMIL, "State",colorvar = "AVE.MIL",
options=list(title = "Miller Score vs State", region="US", displayMode="regions", resolution="provinces",colorAxis="{colors:['gold','blue']}", width=600, height=400))
GeoTable2 <- gvisTable(SMIL,
options=list(width=220, height=300))
GT2 <- gvisMerge(GeoStates2,GeoTable2, horizontal=TRUE)
plot(GT2)
Degree vs GPA
DEGvGPA=gusd%>%group_by(Degree)%>%summarise(AVE.GPA=mean(GPA))%>%
filter(!is.na(AVE.GPA))
dimple(data = DEGvGPA,
x = c("Degree"), y = "AVE.GPA",
type = "bar", width = 950, height = 600
) %>%
add_legend( x = 50, y = 10, width = 100, height = 50,
horizontalAlign = "left"
) %>%
default_colors()%>%
add_title( html = "<h4>Student Degree vs GPA</h4>")
Program vs GPA
PRGMvGPA=prgm%>%group_by(PROGRAM)%>%summarise(AVE.GPA=mean(GPA))%>%
filter(!is.na(AVE.GPA))
dimple(data = PRGMvGPA,
x = c("PROGRAM"), y = "AVE.GPA", groups = "PROGRAM",
type = "bar", width = 850, height = 900
) %>%
default_colors()%>%
add_title( html = "<h4>Student Program vs GPA</h4>")
Students Enrolled by Program
PRGMvENR=prgm%>%group_by(PROGRAM)%>%summarise(Count=length(GPA))
dimple(data = PRGMvENR,
x = c("PROGRAM"), y = "Count", groups = "PROGRAM",
type = "bar", width = 850, height = 900
) %>%
default_colors()%>%
add_title( html = "<h4>Student Program by Enrollment</h4>")