Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age,team,year,medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2<- olympic_gymnasts |>
filter(year%in%c(2008,2012,2016))
df2
## # A tibble: 2,703 × 16
## id name sex age height weight team noc games year season city
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 2 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 3 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 4 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 5 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 6 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 7 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 8 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 9 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 10 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## # ℹ 2,693 more rows
## # ℹ 4 more variables: sport <chr>, event <chr>, medal <chr>, medalist <lgl>
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
df2 |>
group_by(year) |>
summarize(avg_age = mean(age))
## # A tibble: 3 × 2
## year avg_age
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year<-olympic_gymnasts |>
group_by(year)|>
summarize(avrge_age=mean(age))
oly_year
## # A tibble: 29 × 2
## year avrge_age
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
# Your R code here
df2 |>
filter(year %in% c(2008, 2012, 2016)) |>
group_by(year) |>
mutate(age_difference = age - mean(age))
## # A tibble: 2,703 × 17
## # Groups: year [3]
## id name sex age height weight team noc games year season city
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 2 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 3 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 4 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 5 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 6 51 Nstor A… M 23 167 64 Spain ESP 2016… 2016 Summer Rio …
## 7 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 8 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 9 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## 10 396 Katja A… F 25 165 55 Germ… GER 2008… 2008 Summer Beij…
## # ℹ 2,693 more rows
## # ℹ 5 more variables: sport <chr>, event <chr>, medal <chr>, medalist <lgl>,
## # age_difference <dbl>
Discussion: Enter your discussion of results here. I chose this question because it goes beyond basic filtering and summarizing. We’re able to contextualize each gymnast’s age, which could be useful for spotting unusually young or experienced competitors.