Globálne nastavenie Chunkov

knitr::opts_chunk$set(
    echo = TRUE,
    message = FALSE,
    warning = FALSE
)
## Numerické skaláre
x <- 12
y <- 4.2

sucet    <- x + y
rozdiel  <- x - y
nasobok  <- x * y
podiel   <- x / y
mocnina  <- x ^ 2
modulo   <- x %% 5

zaokr1   <- round(y, 1)
ceil_y   <- ceiling(y)
floor_y  <- floor(y)

x; y
[1] 12
[1] 4.2
sucet; rozdiel; nasobok; podiel; mocnina; modulo
[1] 16.2
[1] 7.8
[1] 50.4
[1] 2.857143
[1] 144
[1] 2
zaokr1; ceil_y; floor_y
[1] 4.2
[1] 5
[1] 4
  

Vypočítajte hodnotu

\[\frac{(20^2 + 10)}{6}\]

(20^2 + 10) / 6
[1] 68.33333

Textové hodnoty a premenné

meno <- "Anna"
priezvisko <- "Novaková"

cele_meno <- paste(meno, priezvisko)
cele_meno_bez <- paste0(meno, priezvisko)

zelenina <- paste("mrkva", "uhorka", "paradajka", sep = ";")

meno; priezvisko; cele_meno; cele_meno_bez; zelenina
[1] "Anna"
[1] "Novaková"
[1] "Anna Novaková"
[1] "AnnaNovaková"
[1] "mrkva;uhorka;paradajka"

Vytvorte textovú premennú slovo <- “programovanie” a:

1.  zistite, koľko má znakov,
2.  vypíšte podreťazec od 5. po 9. znak.
slovo <- "programovanie"
nchar(slovo)
[1] 13
substr(slovo, 5, 9)
[1] "ramov"

Logické hodnoty a premenné

p <- TRUE
q <- FALSE

!q
[1] TRUE
p & q
[1] FALSE
p | q
[1] TRUE
xor(p, q)
[1] TRUE

Porovnávanie

10 > 3
[1] TRUE
5 <= 2
[1] FALSE
"dog" == "dog"
[1] TRUE
"dog" != "cat"
[1] TRUE

Kombinácie podmienok

z <- 15
z > 10 & z < 20
[1] TRUE
z < 0 | z == 15
[1] TRUE

Definujte cislo <- 25.

Skontrolujte: 1. či je väčšie ako 10, 2. či je menšie alebo rovné 30, 3. vytvorte podmienku, ktorá overí, či platia súčasne obidve podmienky.

cislo <- 25
cislo > 10
[1] TRUE
cislo <= 30
[1] TRUE
cislo > 10 & cislo <= 30
[1] TRUE

Môj návrh použitia novinky

#Na rozdiel od pôvodného dokumentu ukážeme prácu s logickou funkciou any() a all(), ktoré sa hodia pri vektoroch:

vek <- c(18, 22, 19, 25, 30)

any(vek > 29)   # existuje aspoň jeden prvok väčší ako 29?
[1] TRUE
all(vek >= 18)  # sú všetky prvky aspoň 18?
[1] TRUE
LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQotLS0KdGl0bGU6ICJ6YWRhbmllMiIKb3V0cHV0OiBodG1sX2RvY3VtZW50Ci0tLQotLS0KdGl0bGU6ICJaw6FrbGFkbsOpIG9wZXLDoWNpZSB2IFIg4oCTIGFsdGVybmF0w612bnkgY3ZpxI1lYm7DvSBkb2t1bWVudCIKYXV0aG9yOiAiUHLDrXByYXZhOiDFoHR1ZGVudGthIEFuYXN0YXNpeWEgWnlsZXZpY2ggIgpkYXRlOiAiT2t0w7NiZXIgMjAyNSIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIHRoZW1lOiB1bml0ZWQKICAgIGhpZ2hsaWdodDogdGFuZ28KZWRpdG9yX29wdGlvbnM6IAogIG1hcmtkb3duOiAKICAgIHdyYXA6IDcyCi0tLQoKIyMgR2xvYsOhbG5lIG5hc3RhdmVuaWUgQ2h1bmtvdgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9VFJVRSwgZWNobz1UUlVFfQprbml0cjo6b3B0c19jaHVuayRzZXQoCgllY2hvID0gVFJVRSwKCW1lc3NhZ2UgPSBGQUxTRSwKCXdhcm5pbmcgPSBGQUxTRQopCiMjIE51bWVyaWNrw6kgc2thbMOhcmUKeCA8LSAxMgp5IDwtIDQuMgoKc3VjZXQgICAgPC0geCArIHkKcm96ZGllbCAgPC0geCAtIHkKbmFzb2JvayAgPC0geCAqIHkKcG9kaWVsICAgPC0geCAvIHkKbW9jbmluYSAgPC0geCBeIDIKbW9kdWxvICAgPC0geCAlJSA1Cgp6YW9rcjEgICA8LSByb3VuZCh5LCAxKQpjZWlsX3kgICA8LSBjZWlsaW5nKHkpCmZsb29yX3kgIDwtIGZsb29yKHkpCgp4OyB5CnN1Y2V0OyByb3pkaWVsOyBuYXNvYm9rOyBwb2RpZWw7IG1vY25pbmE7IG1vZHVsbwp6YW9rcjE7IGNlaWxfeTsgZmxvb3JfeQogIApgYGAKIyMgVnlwb8SNw610YWp0ZSBob2Rub3R1CiQkXGZyYWN7KDIwXjIgKyAxMCl9ezZ9JCQKYGBge3J9CigyMF4yICsgMTApIC8gNgpgYGAKIyMgVGV4dG92w6kgaG9kbm90eSBhIHByZW1lbm7DqQpgYGB7cn0KbWVubyA8LSAiQW5uYSIKcHJpZXp2aXNrbyA8LSAiTm92YWtvdsOhIgoKY2VsZV9tZW5vIDwtIHBhc3RlKG1lbm8sIHByaWV6dmlza28pCmNlbGVfbWVub19iZXogPC0gcGFzdGUwKG1lbm8sIHByaWV6dmlza28pCgp6ZWxlbmluYSA8LSBwYXN0ZSgibXJrdmEiLCAidWhvcmthIiwgInBhcmFkYWprYSIsIHNlcCA9ICI7IikKCm1lbm87IHByaWV6dmlza287IGNlbGVfbWVubzsgY2VsZV9tZW5vX2JlejsgemVsZW5pbmEKYGBgCgojIyBWeXR2b3J0ZSB0ZXh0b3bDuiBwcmVtZW5uw7ogc2xvdm8gPC0gInByb2dyYW1vdmFuaWUiIGE6CgkxLgl6aXN0aXRlLCBrb8S+a28gbcOhIHpuYWtvdiwKCTIuCXZ5cMOtxaF0ZSBwb2RyZcWlYXplYyBvZCA1LiBwbyA5LiB6bmFrLgpgYGB7cn0Kc2xvdm8gPC0gInByb2dyYW1vdmFuaWUiCm5jaGFyKHNsb3ZvKQpzdWJzdHIoc2xvdm8sIDUsIDkpCmBgYAoJCiMjIExvZ2lja8OpIGhvZG5vdHkgYSBwcmVtZW5uw6kKYGBge3J9CnAgPC0gVFJVRQpxIDwtIEZBTFNFCgohcQpwICYgcQpwIHwgcQp4b3IocCwgcSkKYGBgCgojIFBvcm92bsOhdmFuaWUKYGBge3J9CjEwID4gMwo1IDw9IDIKImRvZyIgPT0gImRvZyIKImRvZyIgIT0gImNhdCIKYGBgCiMgS29tYmluw6FjaWUgcG9kbWllbm9rCmBgYHtyfQp6IDwtIDE1CnogPiAxMCAmIHogPCAyMAp6IDwgMCB8IHogPT0gMTUKYGBgCiMjIERlZmludWp0ZSBjaXNsbyA8LSAyNS4KPlNrb250cm9sdWp0ZToKCTEuCcSNaSBqZSB2w6TEjcWhaWUgYWtvIDEwLAoJMi4JxI1pIGplIG1lbsWhaWUgYWxlYm8gcm92bsOpIDMwLAoJMy4Jdnl0dm9ydGUgcG9kbWllbmt1LCBrdG9yw6Egb3ZlcsOtLCDEjWkgcGxhdGlhIHPDusSNYXNuZSBvYmlkdmUgcG9kbWllbmt5LgoJCmBgYHtyfQpjaXNsbyA8LSAyNQpjaXNsbyA+IDEwCmNpc2xvIDw9IDMwCmNpc2xvID4gMTAgJiBjaXNsbyA8PSAzMApgYGAKCiMjIE3DtGogbsOhdnJoIHBvdcW+aXRpYSBub3Zpbmt5CiNOYSByb3pkaWVsIG9kIHDDtHZvZG7DqWhvIGRva3VtZW50dSB1a8Ohxb5lbWUgcHLDoWN1IHMgbG9naWNrb3UgZnVua2Npb3UgYW55KCkgYSBhbGwoKSwga3RvcsOpIHNhIGhvZGlhIHByaSB2ZWt0b3JvY2g6CmBgYHtyfQp2ZWsgPC0gYygxOCwgMjIsIDE5LCAyNSwgMzApCgphbnkodmVrID4gMjkpICAgIyBleGlzdHVqZSBhc3BvxYggamVkZW4gcHJ2b2sgdsOkxI3FocOtIGFrbyAyOT8KYWxsKHZlayA+PSAxOCkgICMgc8O6IHbFoWV0a3kgcHJ2a3kgYXNwb8WIIDE4PwpgYGAK