Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2 <- df |>
filter(year %in% c(2008, 2012, 2016))
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
df2 |>
group_by(year) |>
summarize(mean_age = mean(age))
## # A tibble: 3 × 2
## year mean_age
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year <- olympic_gymnasts |>
group_by(year) |>
summarize(mean_age = mean(age))
oly_year
## # A tibble: 29 × 2
## year mean_age
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
min(oly_year$mean_age)
## [1] 19.86606
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
# Your R code here
oly_weight <- olympic_gymnasts |>
group_by(sex) |>
summarize(mean_weight = mean(weight, na.rm = TRUE))
oly_weight
## # A tibble: 2 × 2
## sex mean_weight
## <chr> <dbl>
## 1 F 47.8
## 2 M 63.3
Discussion: Enter your discussion of results here. I created a code that created a dataset named oly_weight. I wanted to compare the average weight between the female and male gymnasts. I first grouped the data by sex, and then calculated the mean weight for the two genders. When I first ran my code, I did not use ‘na.rm = TRUE,’ to remove the NA’s, which made both my results NA. Once I added that function in, It allowed me to see the weight differences between them. On average, the male gymnasts weigh around 63 kilograms, and female gymnasts weigh around 48 kilograms if you round up.