Packages
library(VIM)
## Loading required package: colorspace
## Loading required package: grid
## VIM is ready to use.
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
##
## Attaching package: 'VIM'
## The following object is masked from 'package:datasets':
##
## sleep
Q3
dirty_iris <- read.csv("https://raw.githubusercontent.com/edwindj/datacleaning/master/data/dirty_iris.csv")
sum(is.na(dirty_iris$Petal.Length))
## [1] 19
Q4
num_comp <- c(sum(complete.cases(dirty_iris)), mean(complete.cases(dirty_iris)) * 100)
num_comp
## [1] 96 64
Q5
colSums(is.na(dirty_iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 10 17 19 12 0
sapply(dirty_iris, function(x) sum(is.infinite(x)))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 1 0
sapply(dirty_iris, function(x) sum(is.nan(x)))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 0 0
which(is.infinite(dirty_iris$Petal.Width))
## [1] 86
Q6
dirty_iris$Petal.Width[is.infinite(dirty_iris$Petal.Width)] <- NA
dirty_iris$Petal.Width[86]
## [1] NA
Q7
violating_obs <- subset(dirty_iris, Sepal.Width <= 0 | Sepal.Length > 30)
nrow(violating_obs)
## [1] 4
Q8
violating_rows <- which(dirty_iris$Sepal.Width <= 0)
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)] <-
abs(dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width < 0)])
dirty_iris$Sepal.Width[which(dirty_iris$Sepal.Width == 0)] <- NA
dirty_iris$Sepal.Width
## [1] 3.2 3.3 NA 3.4 2.6 NA 2.7 3.0 2.7 3.1 3.5 2.7 3.0 2.8 3.9
## [16] 3.0 NA 3.2 4.0 NA 3.6 NA 2.8 3.3 3.0 3.2 3.1 29.0 3.2 2.8
## [31] 3.2 3.2 2.8 2.9 2.9 3.0 3.0 2.2 2.5 3.0 NA 2.7 NA 2.7 4.2
## [46] 2.8 NA 3.2 3.0 3.4 2.6 3.1 2.7 3.4 3.3 3.8 3.8 2.9 2.8 2.8
## [61] 2.3 2.8 3.0 3.3 3.0 2.5 2.5 3.2 3.5 3.5 3.0 3.1 3.5 NA 2.8
## [76] 2.5 3.5 3.0 3.8 3.8 2.6 3.4 2.9 3.7 3.0 3.8 2.9 2.9 2.9 2.5
## [91] 3.2 NA 3.4 2.7 2.2 3.1 2.3 NA 3.0 2.8 3.4 3.6 2.7 3.0 3.7
## [106] NA 3.0 3.0 2.8 3.4 3.4 3.4 3.4 3.3 3.1 2.6 NA 3.1 3.0 2.8
## [121] 3.0 2.3 3.2 4.1 30.0 2.9 3.2 NA 3.6 NA 2.5 3.1 NA 3.3 3.0
## [136] 3.0 3.2 3.0 3.1 2.2 NA NA 3.0 2.9 2.5 3.1 3.0 3.5 3.1 2.6
Q9
# Sepal.Width
sw_mean <- mean(dirty_iris$Sepal.Width, na.rm = TRUE)
dirty_iris$Sepal.Width[is.na(dirty_iris$Sepal.Width)] <- sw_mean
#Petal.Length
pl_median <- median(dirty_iris$Petal.Length, na.rm = TRUE)
dirty_iris$Petal.Length[is.na(dirty_iris$Petal.Length)] <- pl_median
#Petal.Width
dirty_iris <- VIM::kNN(dirty_iris, variable = "Petal.Width", k = 5, imp_var = FALSE)
## Sepal.Length Sepal.Width Petal.Length Sepal.Length Sepal.Width Petal.Length
## 0.0 2.2 0.0 73.0 30.0 63.0
#Sepal.Length
dirty_iris$Species <- as.factor(dirty_iris$Species)
fit <- lm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width + Species,
data = dirty_iris, subset = !is.na(Sepal.Length))
miss_sl <- which(is.na(dirty_iris$Sepal.Length))
if (length(miss_sl)) {
dirty_iris$Sepal.Length[miss_sl] <- predict(fit, newdata = dirty_iris[miss_sl, ])
}
colSums(is.na(dirty_iris))
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 0 0 0 0 0