Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df <- olympic_gymnasts |> select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2 <- df |> filter(year %in% c(2008, 2012, 2016))
df2
## # A tibble: 2,703 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 2 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 3 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 4 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 5 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 6 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 7 Katja Abel F 25 Germany 2008 FALSE
## 8 Katja Abel F 25 Germany 2008 FALSE
## 9 Katja Abel F 25 Germany 2008 FALSE
## 10 Katja Abel F 25 Germany 2008 FALSE
## # ℹ 2,693 more rows
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
df2 |> group_by(year) |> summarize(mean(age))
## # A tibble: 3 × 2
## year `mean(age)`
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year <- olympic_gymnasts |> group_by(year) |> summarise(mean(age))
oly_year
## # A tibble: 29 × 2
## year `mean(age)`
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
# finds the minimum average age
min(oly_year)
## [1] 19.86606
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
# Your R code here
# Question: How many medals did each country/team win?
team_medals_won <- olympic_gymnasts |>
select(team, medalist) |>
filter(medalist == TRUE) |>
count(team)
team_medals_won
## # A tibble: 42 × 2
## team n
## <chr> <int>
## 1 Austria 2
## 2 Belarus 4
## 3 Belgium 19
## 4 Brazil 4
## 5 Bulgaria 10
## 6 Canada 1
## 7 Central Turnverein, Chicago 4
## 8 China 109
## 9 Croatia 1
## 10 Czechoslovakia 78
## # ℹ 32 more rows
Discussion: Enter your discussion of results here. I chose the question “How many medals did each country win?” since I knew it would involve filtering and having some sort of subset of the original dataset. In order to do this I chose use the select() function to create a subset using the column names “team” and “medalist”. “Team” was used so that we could identify the countries that won those medals and “Medalist” was used becasue we could identify whether a country won a medal or not. Afterwards I filtered the subset by if the team got a medal so having the condition medalist == TRUE would filter out the medalist that were not TRUE. Then I used count() on the “team” column to see how many medals each country won.