Overview

The main purpose of this task is to check that you can get it to load and run and knit it to html. Once that’s working, have a go at the embedded exercises. Exercise 7 is just bonus. At the end, knit it to html and upload both files (Rmd and html) on blackboard (not zipped).

R and the RStudio IDE

R is a free software environment for statistical computing and graphics. We will use the RStudio IDE (Integrated Development Environment). This has a number of nice features which we’ll cover as we go through - identify the following elements:

Exercise 1a

Create variables for the following information: name (character): Your name age (numeric): Your age is_local (logical): Do you live in Leicester? (TRUE/FALSE)

# Define variables for personal information
name <- "Vittal"          
age <- 23              
is_local <- TRUE          

Exercise 1b

Is it possible to create a vector containing the values for your three variables? If not, create a named list containing the values for your three variables and print it.

# Vectors require same data type, so use a named list for mixed types
vittal_bio <- list(
  name = name,
  age = age,
  is_local = is_local
)
# Print the list using pipe for consistency
print(vittal_bio)
## $name
## [1] "Vittal"
## 
## $age
## [1] 23
## 
## $is_local
## [1] TRUE

Exercise 2

Create a data frame called “students” with the following columns: Name (character): Names of students (include your name and at least three more names) Age (numeric): Ages of students Grade (factor): Grades of students (with levels: A, B, C) Is_Local (logical): Whether each student lives in Leicester (TRUE/FALSE)

# Create students data frame with specified columns
students_list <- data.frame(
  name = c("Vittal", "Mahi", "Abhi", "Jai"),            
  age = c(23, 24, 24, 22),                              
  grade = factor(c("A", "B", "C", "A"), levels = c("A", "B", "C")),  
  is_local = c(TRUE, FALSE, TRUE, FALSE)                 
)
# Print the data frame
students_list
##     name age grade is_local
## 1 Vittal  23     A     TRUE
## 2   Mahi  24     B    FALSE
## 3   Abhi  24     C     TRUE
## 4    Jai  22     A    FALSE

Exercise 3

Let R show how many times the different levels appear in the grade-column

# Count frequency of each grade level using dplyr
table(students_list$grade)
## 
## A B C 
## 2 1 1

Exercise 4

Extract and print the Age vector from the students data frame.

# Extract and print the age column
students_list$age
## [1] 23 24 24 22

Exercise 5

Look up the function “mean()” with the help function. Calculate the average age of the students from your dataframe and print it out. Use the pipe operator to do this calculation in one line of code.

Exercise 6

Why does the following code not run? Fix the Code (in the code chunk below named r “Exercise 6, solution”). Note, before you run the code, you need to get rid of the “#”s. You can do this by selecting everything and using the shortcut ‘Ctrl Shift C’.” (Commenting it out again works the same way).

# df <- data.frame(Name = c("John", "Jane", "Doe"), Age = c(25, 30))
# print(df)
# 
# print("The problem was )
# 
# age_in_10_years <- df$age +10
# mean(age_in_10years)
df <- data.frame(Name = c("John", "Jane", "Doe"), Age = c(25, 30, 24))
print(df)
##   Name Age
## 1 John  25
## 2 Jane  30
## 3  Doe  24
# 
print("The problem was fixed" )
## [1] "The problem was fixed"
# 
age_in_10_years <- df$Age +10
print(age_in_10_years)
## [1] 35 40 34
mean_age_in_10_years <- mean(age_in_10_years)
print(mean_age_in_10_years)
## [1] 36.33333

Exercise 7* (bonus)

R contains some built-in data sets (that means they are included with the R installation and can be accessed without the need to load any external libraries.) One of them is “mtcars”. Print it out and explore it using the functions head(), View(), summary(), glimpse(), str(). Try to understand what the functions tell you about the data set. Moreover, why should you not include the function “View()” when you try to knit your file?

# Explore mtcars dataset
print(mtcars)         # Print full dataset
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
head(mtcars)          # First 6 rows
##                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
## Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
# View(mtcars)            # Commented out: View() is interactive and breaks knitting
summary(mtcars)       # Summary statistics
##       mpg             cyl             disp             hp       
##  Min.   :10.40   Min.   :4.000   Min.   : 71.1   Min.   : 52.0  
##  1st Qu.:15.43   1st Qu.:4.000   1st Qu.:120.8   1st Qu.: 96.5  
##  Median :19.20   Median :6.000   Median :196.3   Median :123.0  
##  Mean   :20.09   Mean   :6.188   Mean   :230.7   Mean   :146.7  
##  3rd Qu.:22.80   3rd Qu.:8.000   3rd Qu.:326.0   3rd Qu.:180.0  
##  Max.   :33.90   Max.   :8.000   Max.   :472.0   Max.   :335.0  
##       drat             wt             qsec             vs        
##  Min.   :2.760   Min.   :1.513   Min.   :14.50   Min.   :0.0000  
##  1st Qu.:3.080   1st Qu.:2.581   1st Qu.:16.89   1st Qu.:0.0000  
##  Median :3.695   Median :3.325   Median :17.71   Median :0.0000  
##  Mean   :3.597   Mean   :3.217   Mean   :17.85   Mean   :0.4375  
##  3rd Qu.:3.920   3rd Qu.:3.610   3rd Qu.:18.90   3rd Qu.:1.0000  
##  Max.   :4.930   Max.   :5.424   Max.   :22.90   Max.   :1.0000  
##        am              gear            carb      
##  Min.   :0.0000   Min.   :3.000   Min.   :1.000  
##  1st Qu.:0.0000   1st Qu.:3.000   1st Qu.:2.000  
##  Median :0.0000   Median :4.000   Median :2.000  
##  Mean   :0.4062   Mean   :3.688   Mean   :2.812  
##  3rd Qu.:1.0000   3rd Qu.:4.000   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :5.000   Max.   :8.000
#glimpse(mtcars)       # Tidy overview of structure
str(mtcars)           # Detailed structure           
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...