# Load packages
# Core
library(tidyverse)
library(tidyquant)
Collect individual returns into a portfolio by assigning a weight to each stock
Choose your stocks.
from 2012-12-31 to 2017-12-31
# Choose stocks
symbols <- c("TSLA", "AMZN", "AAPL", "NVDA", "PG")
prices <- tq_get(x = symbols,
get. = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "quarterly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "NVDA" "PG" "TSLA"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.2
## 2 AMZN 0.2
## 3 NVDA 0.2
## 4 PG 0.2
## 5 TSLA 0.2
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "quarters")
portfolio_returns_tbl
## # A tibble: 20 × 2
## date portfolio.returns
## <date> <dbl>
## 1 2013-03-28 0.0361
## 2 2013-06-28 0.216
## 3 2013-09-30 0.199
## 4 2013-12-31 0.0555
## 5 2014-03-31 0.0463
## 6 2014-06-30 0.0652
## 7 2014-09-30 0.0321
## 8 2014-12-31 0.0299
## 9 2015-03-31 0.0178
## 10 2015-06-30 0.0888
## 11 2015-09-30 0.0192
## 12 2015-12-31 0.121
## 13 2016-03-31 -0.00141
## 14 2016-06-30 0.0598
## 15 2016-09-30 0.147
## 16 2016-12-30 0.0705
## 17 2017-03-31 0.149
## 18 2017-06-30 0.124
## 19 2017-09-29 0.0541
## 20 2017-12-29 0.0598
portfolio_returns_tbl %>%
ggplot(mapping = aes(x = portfolio.returns)) +
geom_histogram(fill = "cornflowerblue",
binwidth = 0.02) +
geom_density(bw = 0.015) + # Adjusting bindwidth
# Formatting
scale_x_continuous(labels = scales::percent_format()) +
labs(x = "returns",
y = "distribution",
title = "Portfolio Histogram & Density")
What return should you expect from the portfolio in a typical quarter?
expected_return <- mean(portfolio_returns_tbl$portfolio.returns)
expected_return
## [1] 0.07946315
expected_return <- median(portfolio_returns_tbl$portfolio.returns)
expected_return
## [1] 0.05978888
Answer: In a typical quarter, I should expect a 0.05978889 (ca. 0.06) return. Based on the median function as the mean function sometimes exaggerate the typical value when your data includes extreme outliers.