Import data
# csv file
data <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-07-01/weekly_gas_prices.csv')
Apply the following dplyr verbs to your data
Filter rows
filter(data, grade == "regular", fuel == "gasoline")
## # A tibble: 5,222 × 5
## date fuel grade formulation price
## <date> <chr> <chr> <chr> <dbl>
## 1 1990-08-20 gasoline regular all 1.19
## 2 1990-08-20 gasoline regular conventional 1.19
## 3 1990-08-27 gasoline regular all 1.25
## 4 1990-08-27 gasoline regular conventional 1.25
## 5 1990-09-03 gasoline regular all 1.24
## 6 1990-09-03 gasoline regular conventional 1.24
## 7 1990-09-10 gasoline regular all 1.25
## 8 1990-09-10 gasoline regular conventional 1.25
## 9 1990-09-17 gasoline regular all 1.27
## 10 1990-09-17 gasoline regular conventional 1.27
## # ℹ 5,212 more rows
Arrange rows
arrange(data, desc(price))
## # A tibble: 22,360 × 5
## date fuel grade formulation price
## <date> <chr> <chr> <chr> <dbl>
## 1 2022-06-13 gasoline premium reformulated 6.06
## 2 2022-06-20 gasoline premium reformulated 6.03
## 3 2022-06-06 gasoline premium reformulated 5.96
## 4 2022-06-27 gasoline premium reformulated 5.96
## 5 2022-06-13 gasoline midgrade reformulated 5.86
## 6 2022-07-04 gasoline premium reformulated 5.85
## 7 2022-06-20 gasoline midgrade reformulated 5.83
## 8 2022-06-20 diesel all <NA> 5.81
## 9 2022-06-20 diesel ultra_low_sulfur <NA> 5.81
## 10 2022-06-27 diesel all <NA> 5.78
## # ℹ 22,350 more rows
Select columns
select(data, date:price)
## # A tibble: 22,360 × 5
## date fuel grade formulation price
## <date> <chr> <chr> <chr> <dbl>
## 1 1990-08-20 gasoline regular all 1.19
## 2 1990-08-20 gasoline regular conventional 1.19
## 3 1990-08-27 gasoline regular all 1.25
## 4 1990-08-27 gasoline regular conventional 1.25
## 5 1990-09-03 gasoline regular all 1.24
## 6 1990-09-03 gasoline regular conventional 1.24
## 7 1990-09-10 gasoline regular all 1.25
## 8 1990-09-10 gasoline regular conventional 1.25
## 9 1990-09-17 gasoline regular all 1.27
## 10 1990-09-17 gasoline regular conventional 1.27
## # ℹ 22,350 more rows
Add columns
data %>%
select(fuel, price) %>%
mutate(price_cumsum = cumsum(price))
## # A tibble: 22,360 × 3
## fuel price price_cumsum
## <chr> <dbl> <dbl>
## 1 gasoline 1.19 1.19
## 2 gasoline 1.19 2.38
## 3 gasoline 1.25 3.63
## 4 gasoline 1.25 4.87
## 5 gasoline 1.24 6.11
## 6 gasoline 1.24 7.36
## 7 gasoline 1.25 8.61
## 8 gasoline 1.25 9.86
## 9 gasoline 1.27 11.1
## 10 gasoline 1.27 12.4
## # ℹ 22,350 more rows
Summarize by groups
data %>%
#group by grade
group_by(grade) %>%
#Amount of entries per grade
summarise(count = n(), .groups = "drop") %>%
#arrange in descending order
arrange(desc(count))
## # A tibble: 6 × 2
## grade count
## <chr> <int>
## 1 all 6506
## 2 regular 5222
## 3 midgrade 4788
## 4 premium 4788
## 5 ultra_low_sulfur 960
## 6 low_sulfur 96