#If your assignment does not render, you might need to install.packages("htmltools")
Read the StudentSurvey into this markdown and answers the following questions
#read the StudentSurvey.csv in here
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.1 ✔ stringr 1.5.2
## ✔ ggplot2 4.0.0 ✔ tibble 3.3.0
## ✔ lubridate 1.9.4 ✔ tidyr 1.3.1
## ✔ purrr 1.1.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
setwd("C:/Users/Mulut/Desktop/Classes/Data101")
student_survey <- read_csv("StudentSurvey.csv")
## Rows: 79 Columns: 17
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (5): Year, Sex, Smoke, Award, HigherSAT
## dbl (12): Exercise, TV, Height, Weight, Siblings, BirthOrder, VerbalSAT, Mat...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#check the head of the data set
head(student_survey)
## # A tibble: 6 × 17
## Year Sex Smoke Award HigherSAT Exercise TV Height Weight Siblings
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Senior M No Olympic Math 10 1 71 180 4
## 2 Sophomore F Yes Academy Math 4 7 66 120 2
## 3 FirstYear M No Nobel Math 14 5 72 208 2
## 4 Junior M No Nobel Math 3 1 63 110 1
## 5 Sophomore F No Nobel Verbal 3 3 65 150 1
## 6 Sophomore F No Nobel Verbal 5 4 65 114 2
## # ℹ 7 more variables: BirthOrder <dbl>, VerbalSAT <dbl>, MathSAT <dbl>,
## # SAT <dbl>, GPA <dbl>, Pulse <dbl>, Piercings <dbl>
#check the dimensions
dim(student_survey)
## [1] 79 17
#create a table of students'sex and "HigherSAT"
table(student_survey$Sex, student_survey$HigherSAT)
##
## Math Verbal
## F 25 15
## M 24 15
# Display summary statistics for VerbalSAT
summary(student_survey$VerbalSAT)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 420.0 550.0 580.0 583.2 630.0 720.0
#Find the average GPA of students
mean(student_survey$GPA)
## [1] 3.169114
#Create a new dataframe, call it "column_df". This new dataframe should contain students' weight and number of hours the exercise
column_df <- data.frame(student_survey$Weight,student_survey$Exercise)
column_df
## student_survey.Weight student_survey.Exercise
## 1 180 10
## 2 120 4
## 3 208 14
## 4 110 3
## 5 150 3
## 6 114 5
## 7 128 10
## 8 235 13
## 9 115 12
## 10 140 12
## 11 135 6
## 12 110 10
## 13 99 3
## 14 165 7
## 15 120 2
## 16 154 14
## 17 110 10
## 18 145 14
## 19 195 20
## 20 200 7
## 21 167 12
## 22 175 10
## 23 155 6
## 24 185 14
## 25 190 12
## 26 165 10
## 27 175 8
## 28 126 0
## 29 187 10
## 30 170 6
## 31 158 5
## 32 119 24
## 33 205 2
## 34 129 10
## 35 145 6
## 36 130 5
## 37 215 5
## 38 135 12
## 39 145 2
## 40 98 7
## 41 150 15
## 42 159 5
## 43 174 7
## 44 160 15
## 45 165 8
## 46 161 14
## 47 130 4
## 48 175 15
## 49 255 4
## 50 160 15
## 51 160 3
## 52 95 3
## 53 115 15
## 54 120 20
## 55 135 3
## 56 180 6
## 57 155 12
## 58 110 4
## 59 215 20
## 60 140 10
## 61 195 10
## 62 185 4
## 63 185 9
## 64 209 12
## 65 145 2
## 66 180 2
## 67 170 5
## 68 135 5
## 69 165 6
## 70 137 10
## 71 147 4
## 72 150 5
## 73 155 17
## 74 160 7
## 75 130 2
## 76 180 8
## 77 150 1
## 78 205 14
## 79 115 12
#Access the fourth element in the first column from the StudentSurvey's dataset.
student_survey[4,1]
## # A tibble: 1 × 1
## Year
## <chr>
## 1 Junior