# csv file
mydata<- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2025/2025-03-04/longbeach.csv')
mydata
## # A tibble: 29,787 × 22
## animal_id animal_name animal_type primary_color secondary_color sex
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 A693708 *charlien dog white <NA> Female
## 2 A708149 <NA> reptile brown green Unknown
## 3 A638068 <NA> bird green red Unknown
## 4 A639310 <NA> bird white gray Unknown
## 5 A618968 *morgan cat black white Female
## 6 A730385 *brandon rabbit black white Neutered
## 7 A646202 <NA> bird black <NA> Unknown
## 8 A628138 <NA> other gray black Unknown
## 9 A597464 <NA> cat black <NA> Unknown
## 10 A734321 sophie dog cream <NA> Spayed
## # ℹ 29,777 more rows
## # ℹ 16 more variables: dob <date>, intake_date <date>, intake_condition <chr>,
## # intake_type <chr>, intake_subtype <chr>, reason_for_intake <chr>,
## # outcome_date <date>, crossing <chr>, jurisdiction <chr>,
## # outcome_type <chr>, outcome_subtype <chr>, latitude <dbl>, longitude <dbl>,
## # outcome_is_dead <lgl>, was_outcome_alive <lgl>, geopoint <chr>
Through the years adoption rates have been increasing.
mydata %>%
# Count the frequency of combinations of 'outcome_date' and 'outcome_type'
# and arrange the results in descending order by the count (n).
count(outcome_date, outcome_type, sort = TRUE) %>%
# Filter the data to keep only rows where the 'outcome_type' is exactly "adoption".
filter(outcome_type == "adoption") %>%
# Group the daily/monthly counts into yearly totals for time series analysis.
# - '.date_var = outcome_date': Specifies the column containing the date information.
# - '.by = "year"': Aggregates the data to a yearly frequency.
# - 'n = sum(n)': Calculates the total number of adoptions (the original 'n' column)
# within each year and assigns it to the new 'n' column.
timetk::summarise_by_time(.date_var = outcome_date, .by = "year", n = sum(n)) %>%
# Plot
ggplot(aes(outcome_date, n)) +
geom_line()
There seems to be preliminary evidence of a positive relationship between professors salary, and their years of service.