Do not change anything in the following chunk

You will be working on olympic_gymnasts dataset. Do not change the code below:

olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')

olympic_gymnasts <- olympics %>% 
  filter(!is.na(age)) %>%             # only keep athletes with known age
  filter(sport == "Gymnastics") %>%   # keep only gymnasts
  mutate(
    medalist = case_when(             # add column for success in medaling
      is.na(medal) ~ FALSE,           # NA values go to FALSE
      !is.na(medal) ~ TRUE            # non-NA values (Gold, Silver, Bronze) go to TRUE
    )
  )

More information about the dataset can be found at

https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md

Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.

df<- olympic_gymnasts|>
  select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
##    name                    sex     age team     year medalist
##    <chr>                   <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  2 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  3 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  4 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  5 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  6 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  7 Paavo Johannes Aaltonen M        28 Finland  1948 FALSE   
##  8 Paavo Johannes Aaltonen M        28 Finland  1948 TRUE    
##  9 Paavo Johannes Aaltonen M        32 Finland  1952 FALSE   
## 10 Paavo Johannes Aaltonen M        32 Finland  1952 TRUE    
## # ℹ 25,518 more rows

Question 2: From df create df2 that only have year of 2008 2012, and 2016

df2 <- df|>
  filter(year%in% c(2008,2012,2016))
df2
## # A tibble: 2,703 × 6
##    name              sex     age team     year medalist
##    <chr>             <chr> <dbl> <chr>   <dbl> <lgl>   
##  1 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  2 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  3 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  4 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  5 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  6 Nstor Abad Sanjun M        23 Spain    2016 FALSE   
##  7 Katja Abel        F        25 Germany  2008 FALSE   
##  8 Katja Abel        F        25 Germany  2008 FALSE   
##  9 Katja Abel        F        25 Germany  2008 FALSE   
## 10 Katja Abel        F        25 Germany  2008 FALSE   
## # ℹ 2,693 more rows

Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.

Oyears<- df2 |>
  group_by(year) |>
  summarize (avg=mean(age)) 
Oyears 
## # A tibble: 3 × 2
##    year   avg
##   <dbl> <dbl>
## 1  2008  21.6
## 2  2012  21.9
## 3  2016  22.2

Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)

minavg <- olympic_gymnasts |>
  group_by(year) |>
  summarize (minavg= mean(age))
minavg
## # A tibble: 29 × 2
##     year minavg
##    <dbl>  <dbl>
##  1  1896   24.3
##  2  1900   22.2
##  3  1904   25.1
##  4  1906   24.7
##  5  1908   23.2
##  6  1912   24.2
##  7  1920   26.7
##  8  1924   27.6
##  9  1928   25.6
## 10  1932   23.9
## # ℹ 19 more rows

Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure

# From the Olympic gymnast data set filter out gymnasts who's age is 25 only. After doing this, find the max age of gymnasts.
olympic_gymnasts$age [olympic_gymnasts$age ==25] 
##    [1] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##   [25] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##   [49] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##   [73] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##   [97] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [121] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [145] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [169] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [193] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [217] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [241] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [265] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [289] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [313] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [337] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [361] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [385] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [409] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [433] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [457] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [481] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [505] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [529] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [553] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [577] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [601] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [625] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [649] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [673] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [697] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [721] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [745] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [769] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [793] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [817] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [841] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [865] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [889] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [913] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [937] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [961] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
##  [985] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1009] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1033] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1057] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1081] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1105] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1129] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1153] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1177] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1201] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1225] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1249] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1273] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1297] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1321] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1345] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1369] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1393] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1417] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1441] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1465] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1489] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1513] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1537] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1561] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1585] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
## [1609] 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25
 max(olympic_gymnasts$age)
## [1] 49

Discussion: Enter your discussion of results here.