#Question 1

data(cars)
median(cars$speed)
## [1] 15

#Question 2

#install.packages("jsonlite")
library(jsonlite)
BTC <- fromJSON("https://min-api.cryptocompare.com/data/v2/histoday?fsym=BTC&tsym=USD&limit=100")
BTC_Data <- BTC$Data$Data
BTC_Data
##           time     high       low     open volumefrom   volumeto    close
## 1   1750636800 106134.1  99685.07 101015.4   35198.88 3606601777 105423.7
## 2   1750723200 106358.8 104710.65 105423.7   19908.29 2099787247 106133.2
## 3   1750809600 108196.8 105880.48 106133.2   19838.91 2128340952 107399.9
## 4   1750896000 108330.6 106605.50 107399.9   14664.25 1575810933 107012.2
## 5   1750982400 107794.0 106421.82 107012.2   16821.31 1799885723 107105.2
## 6   1751068800 107591.5 106884.15 107105.2    3472.45  372614445 107346.4
## 7   1751155200 108538.4 107233.58 107346.4    6094.35  657403121 108391.9
## 8   1751241600 108815.7 106756.38 108391.9   14220.51 1530756559 107169.8
## 9   1751328000 107574.1 105295.02 107169.8   15730.48 1673173145 105724.2
## 10  1751414400 109818.5 105143.10 105724.2   19611.45 2124516059 108886.6
## 11  1751500800 110584.4 108579.56 108886.6   16647.63 1825182142 109639.0
## 12  1751587200 109810.0 107283.92 109639.0   10440.09 1130647601 108027.7
## 13  1751673600 108444.7 107798.16 108027.7    3465.16  374668092 108244.5
## 14  1751760000 109729.0 107846.02 108244.5    5651.56  614763573 109233.9
## 15  1751846400 109737.8 107513.97 109233.9   13350.41 1447160434 108277.2
## 16  1751932800 109248.3 107445.04 108277.2   12122.12 1316408875 108955.1
## 17  1752019200 112077.2 108341.92 108955.1   19761.34 2177951433 111291.7
## 18  1752105600 116848.3 110555.52 111291.7   31905.27 3616719328 116023.3
## 19  1752192000 118890.3 115236.69 116023.3   26050.27 3060911543 117573.9
## 20  1752278400 118240.0 116954.09 117573.9    7395.67  869899617 117468.2
## 21  1752364800 119503.6 117264.60 117468.2    9553.52 1133368268 119127.7
## 22  1752451200 123220.3 118951.55 119127.7   31361.70 3784774921 119869.0
## 23  1752537600 119958.9 115709.64 119869.0   50123.19 5881848281 117777.9
## 24  1752624000 120122.2 117043.92 117777.9   27837.68 3310853210 118700.4
## 25  1752710400 121020.9 117485.98 118700.4   25218.52 3000532789 119282.7
## 26  1752796800 120911.2 116902.92 119282.7   26111.51 3096339405 118025.9
## 27  1752883200 118572.5 117339.41 118025.9    6706.12  791893577 117913.3
## 28  1752969600 118903.9 116533.22 117913.3    9166.19 1081488186 117328.6
## 29  1753056000 119712.2 116581.70 117328.6   18543.72 2187836281 117441.8
## 30  1753142400 120298.6 116186.23 117441.8   21981.53 2607540535 120023.5
## 31  1753228800 120167.5 117361.89 120023.5   17163.70 2029832616 118808.8
## 32  1753315200 119555.9 117214.42 118808.8   17930.71 2128340081 118397.3
## 33  1753401600 118523.3 114756.37 118397.3   47767.94 5546818212 117644.1
## 34  1753488000 118355.1 117143.68 117644.1   10959.83 1291296799 117971.3
## 35  1753574400 119808.3 117872.15 117971.3   10341.68 1228024808 119468.7
## 36  1753660800 119835.4 117403.28 119468.7   18092.60 2142740462 118059.9
## 37  1753747200 119286.0 116933.73 118059.9   17580.06 2073820445 117942.1
## 38  1753833600 118800.1 115769.47 117942.1   18335.33 2153325010 117853.3
## 39  1753920000 118927.1 115493.77 117853.3   16934.89 1991848800 115765.4
## 40  1754006400 116060.7 112682.82 115765.4   33588.86 3851719229 113263.5
## 41  1754092800 114034.0 112006.36 113263.5   12452.57 1407609649 112546.3
## 42  1754179200 114803.5 111925.95 112546.3    8326.85  947196437 114238.8
## 43  1754265600 115744.6 114140.41 114238.8   14470.62 1662390457 115065.9
## 44  1754352000 115111.4 112629.49 115065.9   16922.91 1925704360 114127.6
## 45  1754438400 115748.2 113364.73 114127.6   14480.66 1659630183 115038.4
## 46  1754524800 117690.9 114288.63 115038.4   16359.62 1904030479 117522.3
## 47  1754611200 117698.4 115895.35 117522.3   14582.39 1702088353 116692.9
## 48  1754697600 117940.3 116360.05 116692.9    7930.51  926558904 116501.3
## 49  1754784000 119320.8 116496.35 116501.3   10554.12 1248946431 119311.7
## 50  1754870400 122309.7 118106.91 119311.7   25659.91 3086540255 118714.6
## 51  1754956800 120326.0 118214.28 118714.6   18213.63 2172908090 120128.2
## 52  1755043200 123735.4 118948.18 120128.2   27352.96 3321096940 123374.6
## 53  1755129600 124532.7 117241.12 123374.6   35491.88 4249355542 118391.6
## 54  1755216000 119335.9 116865.92 118391.6   19724.55 2327158152 117440.1
## 55  1755302400 118000.6 117242.73 117440.1    6405.98  753827490 117469.5
## 56  1755388800 118639.8 117268.69 117469.5    6706.31  791200442 117488.0
## 57  1755475200 117627.7 114716.49 117488.0   22732.79 2634618668 116292.1
## 58  1755561600 116789.9 112738.04 116292.1   26286.85 3006851750 112870.7
## 59  1755648000 114642.3 112387.14 112870.7   22978.24 2610717314 114291.4
## 60  1755734400 114816.8 111993.84 114291.4   19947.31 2256735255 112491.8
## 61  1755820800 117428.1 111675.14 112491.8   28375.72 3261042644 116909.8
## 62  1755907200 117003.3 114533.54 116909.8    8271.23  955311764 115391.8
## 63  1755993600 115626.3 110860.71 115391.8   17025.82 1932434686 113486.7
## 64  1756080000 113648.6 109292.22 113486.7   33305.33 3708998747 110150.1
## 65  1756166400 112407.5 108701.29 110150.1   27215.82 2999152225 111805.9
## 66  1756252800 112669.1 110381.63 111805.9   21850.84 2440706984 111277.0
## 67  1756339200 113487.6 110887.39 111277.0   16865.13 1898278606 112582.2
## 68  1756425600 112646.7 107512.41 112582.2   29122.98 3185827655 108393.1
## 69  1756512000 108937.2 107381.29 108393.1    9682.99 1049906248 108833.5
## 70  1756598400 109510.2 108095.95 108833.5    9099.54  990157825 108273.7
## 71  1756684800 109913.3 107271.39 108273.7   21783.85 2365084072 109256.3
## 72  1756771200 111796.2 108420.77 109256.3   27112.92 2993969176 111245.9
## 73  1756857600 112601.7 110556.54 111245.9   19087.45 2132239040 111751.5
## 74  1756944000 112225.9 109345.22 111751.5   19577.20 2162838408 110732.3
## 75  1757030400 113400.4 110217.27 110732.3   28328.28 3163045481 110677.0
## 76  1757116800 111320.3 110019.89 110677.0    6640.60  734143439 110230.2
## 77  1757203200 111607.9 110215.70 110230.2    6492.41  720954382 111143.2
## 78  1757289600 112937.8 110628.16 111143.2   16345.84 1829788896 112089.1
## 79  1757376000 113293.1 110777.59 112089.1   18844.58 2108163610 111549.1
## 80  1757462400 114341.9 110940.58 111549.1   23523.08 2661952162 113988.2
## 81  1757548800 115543.7 113457.52 113988.2   18345.68 2096575533 115537.8
## 82  1757635200 116816.5 114785.30 115537.8   20842.83 2412089976 116116.3
## 83  1757721600 116361.1 115207.42 116116.3    7083.57  820638135 115971.9
## 84  1757808000 116227.4 115203.80 115971.9    7290.45  843593558 115351.9
## 85  1757894400 116808.1 114427.70 115351.9   18559.61 2137738674 115401.1
## 86  1757980800 117006.6 114765.74 115401.1   16305.16 1890323068 116838.3
## 87  1758067200 117331.1 114742.84 116838.3   23702.53 2750924038 116488.2
## 88  1758153600 117981.1 116134.78 116488.2   19195.15 2253362090 117126.5
## 89  1758240000 117511.0 115150.85 117126.5   16753.48 1947524484 115702.0
## 90  1758326400 116202.3 115488.37 115702.0    5995.45  694697640 115756.1
## 91  1758412800 115901.0 115262.90 115756.1    5422.99  626782372 115299.8
## 92  1758499200 115439.0 112027.44 115299.8   28253.02 3197786130 112747.9
## 93  1758585600 113372.6 111518.32 112747.9   18488.69 2080069064 112043.7
## 94  1758672000 114013.4 111118.70 112043.7   17597.56 1988342352 113360.7
## 95  1758758400 113559.7 108664.26 113360.7   34940.33 3874673082 109061.1
## 96  1758844800 110387.3 108695.14 109061.1   27943.91 3057709370 109723.9
## 97  1758931200 109822.4 109156.33 109723.9    7105.98  778286679 109727.4
## 98  1759017600 112407.0 109280.14 109727.4   11935.68 1316899924 112226.6
## 99  1759104000 114496.6 111625.37 112226.6   19529.19 2209223704 114407.1
## 100 1759190400 114866.5 112727.79 114407.1   22976.41 2612642607 114078.2
## 101 1759276800 118280.4 114004.91 114078.2   26465.07 3077727772 117730.3
##     conversionType conversionSymbol
## 1           direct                 
## 2           direct                 
## 3           direct                 
## 4           direct                 
## 5           direct                 
## 6           direct                 
## 7           direct                 
## 8           direct                 
## 9           direct                 
## 10          direct                 
## 11          direct                 
## 12          direct                 
## 13          direct                 
## 14          direct                 
## 15          direct                 
## 16          direct                 
## 17          direct                 
## 18          direct                 
## 19          direct                 
## 20          direct                 
## 21          direct                 
## 22          direct                 
## 23          direct                 
## 24          direct                 
## 25          direct                 
## 26          direct                 
## 27          direct                 
## 28          direct                 
## 29          direct                 
## 30          direct                 
## 31          direct                 
## 32          direct                 
## 33          direct                 
## 34          direct                 
## 35          direct                 
## 36          direct                 
## 37          direct                 
## 38          direct                 
## 39          direct                 
## 40          direct                 
## 41          direct                 
## 42          direct                 
## 43          direct                 
## 44          direct                 
## 45          direct                 
## 46          direct                 
## 47          direct                 
## 48          direct                 
## 49          direct                 
## 50          direct                 
## 51          direct                 
## 52          direct                 
## 53          direct                 
## 54          direct                 
## 55          direct                 
## 56          direct                 
## 57          direct                 
## 58          direct                 
## 59          direct                 
## 60          direct                 
## 61          direct                 
## 62          direct                 
## 63          direct                 
## 64          direct                 
## 65          direct                 
## 66          direct                 
## 67          direct                 
## 68          direct                 
## 69          direct                 
## 70          direct                 
## 71          direct                 
## 72          direct                 
## 73          direct                 
## 74          direct                 
## 75          direct                 
## 76          direct                 
## 77          direct                 
## 78          direct                 
## 79          direct                 
## 80          direct                 
## 81          direct                 
## 82          direct                 
## 83          direct                 
## 84          direct                 
## 85          direct                 
## 86          direct                 
## 87          direct                 
## 88          direct                 
## 89          direct                 
## 90          direct                 
## 91          direct                 
## 92          direct                 
## 93          direct                 
## 94          direct                 
## 95          direct                 
## 96          direct                 
## 97          direct                 
## 98          direct                 
## 99          direct                 
## 100         direct                 
## 101         direct
max(BTC_Data$close)
## [1] 123374.6

#Question 3

# Title: Data-Driven Insights into the New York Giants–Dallas Cowboys Rivalry

# Research Questions: 
# 1. Who has more wins historically, and how has the balance shifted by decade? 
# 2. Do home/away games affect the rivalry outcome? 
# 3. Are the games getting closer (smaller point differentials) in recent years?

# Find and extract datasets
# install.packages("rvest")
library(rvest)
NYG_vs_DC_alltime <- read_html("https://www.pro-football-reference.com/boxscores/game_query.cgi?tm1=dal&tm2=nyg&yr=all")
NYG_vs_DC_alltime_tbl <- html_elements(NYG_vs_DC_alltime, "table")
NYG_vs_DC_finaltbl <- html_table(NYG_vs_DC_alltime_tbl[[1]])
NYG_vs_DC_finaltbl
## # A tibble: 127 × 10
##       Rk Date       Day   ``    Tm             ``    Opp          Tm   Opp ``   
##    <int> <chr>      <chr> <chr> <chr>          <chr> <chr>     <int> <int> <chr>
##  1     1 1960-12-04 Sun   T     Dallas Cowboys "@"   New York…    31    31 boxs…
##  2     2 1961-10-15 Sun   L     Dallas Cowboys ""    New York…    10    31 boxs…
##  3     3 1961-10-29 Sun   W     Dallas Cowboys "@"   New York…    17    16 boxs…
##  4     4 1962-11-11 Sun   L     Dallas Cowboys ""    New York…    10    41 boxs…
##  5     5 1962-12-16 Sun   L     Dallas Cowboys "@"   New York…    31    41 boxs…
##  6     6 1963-10-20 Sun   L     Dallas Cowboys "@"   New York…    21    37 boxs…
##  7     7 1963-12-01 Sun   L     Dallas Cowboys ""    New York…    27    34 boxs…
##  8     8 1964-10-11 Sun   T     Dallas Cowboys ""    New York…    13    13 boxs…
##  9     9 1964-11-08 Sun   W     Dallas Cowboys "@"   New York…    31    21 boxs…
## 10    10 1965-09-19 Sun   W     Dallas Cowboys ""    New York…    31     2 boxs…
## # ℹ 117 more rows
names(NYG_vs_DC_finaltbl) <- c("Rank", "Date", "Day of Game", "Outcome", "Team", "LoG", "Opponent", "Team Score", "Opponent Score", "Boxscore")
NYG_vs_DC_finaltbl$Rank <- NULL
NYG_vs_DC_finaltbl$Boxscore <- NULL
NYG_vs_DC_finaltbl$PointDifferential <- NYG_vs_DC_finaltbl$`Team Score` - NYG_vs_DC_finaltbl$`Opponent Score`
NYG_vs_DC_finaltbl$Outcome[NYG_vs_DC_finaltbl$Outcome == "W"] <- "Win"
NYG_vs_DC_finaltbl$Outcome[NYG_vs_DC_finaltbl$Outcome == "L"] <- "Loss"
NYG_vs_DC_finaltbl$Outcome[NYG_vs_DC_finaltbl$Outcome == "T"] <- "Tie"
NYG_vs_DC_finaltbl$LoG[NYG_vs_DC_finaltbl$LoG == ""] <- "Home"
NYG_vs_DC_finaltbl$LoG[NYG_vs_DC_finaltbl$LoG == "@"] <- "Away"

#Data Cleaning

library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
NYG_vs_DC_finaltbl$Date <- ymd(as.character(NYG_vs_DC_finaltbl$Date))
str(NYG_vs_DC_finaltbl$Date)
##  Date[1:127], format: "1960-12-04" "1961-10-15" "1961-10-29" "1962-11-11" "1962-12-16" ...
class(NYG_vs_DC_finaltbl$Date)
## [1] "Date"
NYG_vs_DC_finaltbl$`Day of Game` <- as.factor(NYG_vs_DC_finaltbl$`Day of Game`)
class(NYG_vs_DC_finaltbl$`Day of Game`)
## [1] "factor"
NYG_vs_DC_finaltbl$Outcome <- as.factor(NYG_vs_DC_finaltbl$Outcome)
class(NYG_vs_DC_finaltbl$Outcome)
## [1] "factor"
NYG_vs_DC_finaltbl$Team <- as.factor(NYG_vs_DC_finaltbl$Team)
class(NYG_vs_DC_finaltbl$Team)
## [1] "factor"
NYG_vs_DC_finaltbl$LoG <- as.factor(NYG_vs_DC_finaltbl$LoG)
NYG_vs_DC_finaltbl$Opponent <- as.factor(NYG_vs_DC_finaltbl$Opponent)
NYG_vs_DC_finaltbl$`Team Score` <- as.numeric(NYG_vs_DC_finaltbl$`Team Score`)
NYG_vs_DC_finaltbl$`Opponent Score` <- as.numeric(NYG_vs_DC_finaltbl$`Opponent Score`)
NYG_vs_DC_finaltbl$PointDifferential <- as.numeric(NYG_vs_DC_finaltbl$PointDifferential)

###New Cleaned Table

summary(NYG_vs_DC_finaltbl)
##       Date            Day of Game Outcome               Team       LoG    
##  Min.   :1960-12-04   Mon: 13     Loss:47   Dallas Cowboys:127   Away:62  
##  1st Qu.:1977-10-16   Sat:  3     Tie : 2                        Home:65  
##  Median :1994-11-07   Sun:106     Win :78                                 
##  Mean   :1993-12-30   Thu:  4                                             
##  3rd Qu.:2009-10-28   Wed:  1                                             
##  Max.   :2025-09-14                                                       
##             Opponent     Team Score    Opponent Score  PointDifferential
##  New York Giants:127   Min.   : 0.00   Min.   : 0.00   Min.   :-31.000  
##                        1st Qu.:16.00   1st Qu.:13.00   1st Qu.: -4.000  
##                        Median :23.00   Median :20.00   Median :  3.000  
##                        Mean   :23.55   Mean   :19.24   Mean   :  4.307  
##                        3rd Qu.:31.00   3rd Qu.:28.00   3rd Qu.: 13.500  
##                        Max.   :52.00   Max.   :41.00   Max.   : 45.000
NYG_vs_DC_finaltbl
## # A tibble: 127 × 9
##    Date       `Day of Game` Outcome Team           LoG   Opponent   `Team Score`
##    <date>     <fct>         <fct>   <fct>          <fct> <fct>             <dbl>
##  1 1960-12-04 Sun           Tie     Dallas Cowboys Away  New York …           31
##  2 1961-10-15 Sun           Loss    Dallas Cowboys Home  New York …           10
##  3 1961-10-29 Sun           Win     Dallas Cowboys Away  New York …           17
##  4 1962-11-11 Sun           Loss    Dallas Cowboys Home  New York …           10
##  5 1962-12-16 Sun           Loss    Dallas Cowboys Away  New York …           31
##  6 1963-10-20 Sun           Loss    Dallas Cowboys Away  New York …           21
##  7 1963-12-01 Sun           Loss    Dallas Cowboys Home  New York …           27
##  8 1964-10-11 Sun           Tie     Dallas Cowboys Home  New York …           13
##  9 1964-11-08 Sun           Win     Dallas Cowboys Away  New York …           31
## 10 1965-09-19 Sun           Win     Dallas Cowboys Home  New York …           31
## # ℹ 117 more rows
## # ℹ 2 more variables: `Opponent Score` <dbl>, PointDifferential <dbl>