Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age,team,year,medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2<- df|>
filter(year %in% c(2008,2012,2016))
df2
## # A tibble: 2,703 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 2 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 3 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 4 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 5 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 6 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 7 Katja Abel F 25 Germany 2008 FALSE
## 8 Katja Abel F 25 Germany 2008 FALSE
## 9 Katja Abel F 25 Germany 2008 FALSE
## 10 Katja Abel F 25 Germany 2008 FALSE
## # ℹ 2,693 more rows
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
mean(df2$age)
## [1] 21.88383
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year<-olympic_gymnasts|>
group_by(year)|>
summarize(mean_age=mean(age,na.rm=TRUE))
oly_year
## # A tibble: 29 × 2
## year mean_age
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
Display summary statistics of height and Create a table of age and country
summary(olympic_gymnasts$height)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 127.0 158.0 164.0 162.9 169.0 188.0 6924
table(olympic_gymnasts$age,olympic_gymnasts$team)
##
## Algeria Argentina Armenia Australia Austria Azerbaijan Bangladesh Barbados
## 10 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 0 0
## 14 0 0 0 11 0 0 0 0
## 15 0 10 0 27 6 0 0 0
## 16 0 14 0 54 7 0 0 0
## 17 4 0 0 30 7 0 0 0
## 18 0 5 0 67 0 0 0 7
## 19 6 0 7 46 15 0 0 0
## 20 0 12 0 36 13 0 0 0
## 21 0 22 7 35 17 6 3 0
## 22 0 14 0 36 12 6 0 0
## 23 0 0 1 29 21 0 0 0
## 24 0 7 0 46 46 6 0 0
## 25 0 0 0 20 8 0 0 0
## 26 7 1 0 19 37 0 0 0
## 27 7 0 4 16 47 0 0 0
## 28 0 2 0 7 26 0 0 0
## 29 0 8 0 0 8 0 0 0
## 30 0 7 0 5 33 0 0 0
## 31 0 0 1 0 7 0 0 0
## 32 0 0 0 0 8 0 0 0
## 33 0 0 0 0 8 0 0 0
## 34 0 0 0 0 0 0 0 0
## 35 0 0 0 0 8 0 0 0
## 36 0 0 0 0 0 0 0 0
## 37 0 0 0 0 0 0 0 0
## 38 0 0 0 0 8 0 0 0
## 39 0 0 0 0 8 0 0 0
## 40 0 0 0 0 0 0 0 0
## 41 0 0 0 0 0 0 0 0
## 42 0 0 0 0 8 0 0 0
## 43 0 0 0 0 0 0 0 0
## 44 0 0 0 0 0 0 0 0
## 45 0 0 0 0 0 0 0 0
## 49 0 0 0 0 0 0 0 0
##
## Belarus Belgium Bohemia Bolivia Brazil Bulgaria Canada
## 10 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0
## 13 0 0 0 0 0 0 6
## 14 0 0 0 0 0 24 6
## 15 4 7 0 5 11 29 31
## 16 26 24 0 0 31 73 79
## 17 14 15 0 0 21 48 72
## 18 12 16 0 0 7 45 64
## 19 29 6 0 0 20 69 46
## 20 13 10 0 0 18 67 78
## 21 28 17 0 0 18 74 46
## 22 11 3 0 0 24 65 66
## 23 22 6 0 0 5 109 38
## 24 38 4 0 0 8 72 38
## 25 14 8 1 0 8 77 37
## 26 6 2 0 0 17 67 22
## 27 0 2 1 0 5 51 25
## 28 0 2 0 0 0 32 28
## 29 5 3 0 0 3 38 7
## 30 13 1 3 0 2 0 8
## 31 0 7 0 0 3 3 0
## 32 0 11 1 0 0 0 0
## 33 0 8 0 0 0 5 0
## 34 1 1 0 0 0 0 0
## 35 0 0 0 0 0 2 0
## 36 0 0 1 0 0 0 0
## 37 0 0 0 0 0 0 0
## 38 0 2 0 0 0 0 0
## 39 0 0 0 0 0 1 0
## 40 0 0 0 0 0 0 0
## 41 0 0 0 0 0 0 0
## 42 0 0 0 0 0 0 0
## 43 0 7 0 0 0 0 0
## 44 0 0 0 0 0 0 0
## 45 0 1 0 0 0 0 0
## 49 0 0 0 0 0 0 0
##
## Central Turnverein, Chicago Chile China Chinese Taipei Colombia
## 10 0 0 0 0 0
## 11 0 0 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 0 0
## 14 0 0 16 0 0
## 15 0 0 46 0 0
## 16 0 0 57 5 4
## 17 0 0 62 5 0
## 18 0 0 60 0 0
## 19 0 0 34 0 0
## 20 0 0 82 1 0
## 21 1 0 70 19 4
## 22 1 0 39 23 6
## 23 0 4 54 8 0
## 24 0 0 60 8 7
## 25 0 0 22 0 4
## 26 0 2 8 23 0
## 27 0 4 19 0 0
## 28 0 0 7 0 6
## 29 1 0 5 0 0
## 30 0 2 0 0 0
## 31 1 0 0 0 0
## 32 0 0 0 0 6
## 33 0 0 0 0 0
## 34 0 0 0 0 0
## 35 0 0 0 0 0
## 36 0 0 0 0 0
## 37 0 0 0 0 0
## 38 0 0 0 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 0 0
## 42 0 0 0 0 0
## 43 0 0 0 0 0
## 44 0 0 0 0 0
## 45 0 0 0 0 0
## 49 0 0 0 0 0
##
## Concordia Turnverein, St Louis Croatia Cuba Cyprus Czech Republic
## 10 0 0 0 0 0
## 11 0 0 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 0 0
## 14 0 0 0 0 0
## 15 0 0 0 0 0
## 16 0 0 5 0 5
## 17 0 3 16 0 9
## 18 0 0 59 6 5
## 19 1 0 24 0 6
## 20 0 5 58 0 0
## 21 0 0 24 0 9
## 22 0 10 59 0 0
## 23 0 0 16 0 7
## 24 1 5 46 0 3
## 25 0 0 28 0 0
## 26 1 1 15 0 0
## 27 0 0 15 0 6
## 28 1 0 14 0 0
## 29 0 0 0 0 0
## 30 1 1 0 0 0
## 31 0 0 7 0 0
## 32 0 0 0 0 0
## 33 1 0 0 0 0
## 34 0 0 0 0 0
## 35 0 0 0 0 0
## 36 0 0 0 0 0
## 37 0 0 0 0 0
## 38 0 0 0 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 0 0
## 42 0 0 0 0 0
## 43 0 0 0 0 0
## 44 0 0 0 0 0
## 45 0 0 0 0 0
## 49 0 0 0 0 0
##
## Czechoslovakia Davenport Turngemeinde, Davenport Denmark
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 18 0 0
## 15 6 0 0
## 16 42 0 1
## 17 41 0 1
## 18 49 0 3
## 19 59 2 22
## 20 50 0 13
## 21 51 0 13
## 22 77 0 31
## 23 111 0 30
## 24 102 0 4
## 25 66 2 20
## 26 91 0 40
## 27 72 1 36
## 28 40 0 17
## 29 53 0 6
## 30 31 0 11
## 31 34 0 10
## 32 24 0 12
## 33 9 0 2
## 34 8 0 10
## 35 9 0 8
## 36 0 0 0
## 37 0 0 1
## 38 8 0 1
## 39 1 0 0
## 40 0 0 0
## 41 0 0 0
## 42 0 0 0
## 43 0 0 0
## 44 0 0 0
## 45 0 0 0
## 49 0 0 0
##
## Dominican Republic East Germany Ecuador Egypt
## 10 0 0 0 0
## 11 0 0 0 0
## 12 0 0 0 0
## 13 0 0 0 0
## 14 0 0 0 0
## 15 0 12 0 0
## 16 0 30 0 0
## 17 0 18 0 4
## 18 0 44 0 0
## 19 2 38 0 8
## 20 0 54 14 20
## 21 0 30 0 25
## 22 0 22 0 26
## 23 0 40 0 0
## 24 0 40 0 0
## 25 0 22 0 4
## 26 0 16 0 0
## 27 0 16 7 0
## 28 0 0 0 0
## 29 0 38 0 0
## 30 0 0 0 0
## 31 0 0 0 0
## 32 0 0 0 0
## 33 0 0 0 0
## 34 0 0 0 0
## 35 0 0 0 0
## 36 0 0 0 0
## 37 0 0 0 0
## 38 0 0 0 0
## 39 0 0 0 0
## 40 0 0 0 0
## 41 0 0 0 0
## 42 0 0 0 0
## 43 0 0 0 0
## 44 0 0 0 0
## 45 0 0 0 0
## 49 0 0 0 0
##
## Ethnikos Gymnastikos Syllogos Finland France Georgia Germany Great Britain
## 10 1 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 0
## 13 0 0 0 0 0 0
## 14 0 0 17 0 0 0
## 15 0 0 75 0 10 23
## 16 0 21 79 0 38 43
## 17 0 5 46 0 26 63
## 18 0 23 30 7 16 77
## 19 0 31 57 0 47 129
## 20 0 64 104 0 42 82
## 21 0 78 124 0 64 23
## 22 0 50 100 7 58 93
## 23 0 33 69 0 66 40
## 24 0 73 175 0 79 62
## 25 0 56 112 0 77 37
## 26 0 37 43 7 102 48
## 27 0 19 36 0 77 38
## 28 0 50 81 0 41 51
## 29 0 49 39 0 55 28
## 30 0 26 55 3 43 4
## 31 0 8 33 0 36 17
## 32 0 26 31 0 14 10
## 33 0 8 18 0 22 16
## 34 0 32 27 0 0 10
## 35 0 0 7 0 9 8
## 36 0 8 8 0 17 9
## 37 0 0 9 0 3 0
## 38 0 0 0 0 0 5
## 39 0 0 0 0 0 1
## 40 0 8 0 0 8 0
## 41 0 0 0 0 0 0
## 42 0 0 0 0 0 1
## 43 0 0 0 0 0 0
## 44 0 8 0 0 0 0
## 45 0 0 1 0 0 0
## 49 0 0 0 0 0 0
##
## Greece Guatemala Hong Kong Hungary Iceland India Iran Ireland Israel Italy
## 10 0 0 0 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0 0 0 1
## 12 0 0 0 0 0 0 0 0 0 3
## 13 0 0 0 0 0 0 0 0 0 1
## 14 5 0 0 34 0 0 5 0 0 19
## 15 29 5 0 49 0 0 0 0 0 48
## 16 26 4 0 47 0 0 0 0 5 73
## 17 0 5 0 37 0 0 0 0 10 71
## 18 6 0 0 88 0 0 0 4 12 65
## 19 7 0 0 37 7 8 0 0 7 51
## 20 4 4 4 68 0 8 0 0 0 112
## 21 8 0 0 131 0 0 0 0 11 67
## 22 0 0 0 107 0 12 0 0 7 67
## 23 5 0 0 79 7 0 0 1 0 139
## 24 0 0 0 53 4 23 0 7 18 118
## 25 4 0 5 66 0 0 0 0 11 44
## 26 0 0 0 103 0 0 0 0 0 86
## 27 2 0 0 85 7 0 0 6 7 69
## 28 4 0 0 41 0 0 0 0 0 74
## 29 2 0 0 34 0 0 0 0 2 39
## 30 0 0 0 42 0 0 0 0 0 43
## 31 0 0 0 23 0 16 0 0 0 43
## 32 2 0 0 15 0 0 0 0 0 10
## 33 1 0 0 24 0 0 0 0 0 23
## 34 0 0 0 8 0 0 7 0 0 18
## 35 0 0 0 14 0 0 0 0 0 8
## 36 0 0 0 0 0 7 0 0 0 32
## 37 0 0 0 16 0 0 0 0 0 1
## 38 0 0 0 8 0 0 0 0 0 0
## 39 0 0 0 4 0 0 0 0 0 8
## 40 0 0 0 0 0 0 0 0 0 1
## 41 0 0 0 0 0 0 0 0 0 0
## 42 0 0 0 0 0 0 0 0 0 0
## 43 0 0 0 0 0 0 0 0 0 0
## 44 0 0 0 0 0 0 0 0 0 0
## 45 0 0 0 0 0 0 0 0 0 0
## 49 0 0 0 0 0 0 0 0 0 0
##
## Jamaica Japan Kazakhstan La Salle Turnverein, Chicago Latvia Liechtenstein
## 10 0 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 0
## 13 0 0 0 0 0 0
## 14 0 6 0 0 0 0
## 15 0 46 5 0 0 0
## 16 0 41 4 0 0 0
## 17 0 34 0 0 0 0
## 18 0 58 0 0 0 0
## 19 0 47 7 0 0 0
## 20 4 81 0 1 0 0
## 21 0 138 7 0 5 0
## 22 0 101 5 0 7 0
## 23 0 77 0 0 0 0
## 24 0 131 7 1 0 0
## 25 0 154 4 0 9 7
## 26 0 90 0 1 7 0
## 27 0 84 0 0 0 0
## 28 0 36 6 0 0 0
## 29 0 32 0 0 0 0
## 30 0 20 0 0 0 0
## 31 0 8 0 0 0 0
## 32 0 8 0 0 0 0
## 33 0 8 0 0 0 0
## 34 0 0 0 0 0 0
## 35 0 0 0 0 0 0
## 36 0 0 0 0 0 0
## 37 0 8 0 0 0 0
## 38 0 0 0 0 0 0
## 39 0 0 0 0 0 0
## 40 0 8 0 0 0 0
## 41 0 0 0 0 0 0
## 42 0 0 0 0 0 0
## 43 0 0 0 0 0 0
## 44 0 0 0 0 0 0
## 45 0 0 0 0 0 0
## 49 0 0 0 0 0 0
##
## Lithuania Luxembourg Malaysia Mexico Milwaukee Turnverein, Milwaukee
## 10 0 0 0 0 0
## 11 0 0 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 6 0
## 14 0 0 0 18 0
## 15 0 0 0 28 0
## 16 0 0 0 11 0
## 17 0 5 0 17 0
## 18 5 1 2 20 0
## 19 5 6 7 12 0
## 20 0 18 0 7 1
## 21 13 41 0 5 0
## 22 0 20 0 12 0
## 23 0 31 0 9 0
## 24 0 64 0 23 1
## 25 0 25 0 12 1
## 26 0 39 0 2 0
## 27 0 17 0 13 0
## 28 0 37 0 7 0
## 29 0 33 0 0 0
## 30 0 10 0 0 0
## 31 0 15 0 0 0
## 32 0 24 0 0 0
## 33 0 7 0 0 0
## 34 0 6 0 0 1
## 35 0 0 0 0 0
## 36 0 9 0 0 0
## 37 0 0 0 0 0
## 38 0 8 0 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 0 0
## 42 0 8 0 0 0
## 43 0 0 0 0 0
## 44 0 0 0 0 0
## 45 0 0 0 0 0
## 49 0 0 0 0 0
##
## Monaco Mongolia Morocco Namibia Netherlands New York Turnverein, New York
## 10 0 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 0
## 13 0 5 0 0 6 0
## 14 0 5 0 0 6 0
## 15 0 0 0 0 0 0
## 16 0 5 0 0 23 0
## 17 0 0 0 0 21 0
## 18 0 10 0 5 19 0
## 19 0 7 0 0 10 1
## 20 0 5 5 0 18 0
## 21 0 0 0 0 53 0
## 22 0 5 0 0 38 1
## 23 0 7 0 0 15 0
## 24 6 0 0 0 37 0
## 25 0 0 0 0 20 1
## 26 0 0 0 0 25 0
## 27 0 0 0 0 1 1
## 28 1 0 0 0 2 0
## 29 0 0 0 0 21 1
## 30 1 0 0 0 18 0
## 31 0 0 0 0 2 0
## 32 0 0 0 0 8 0
## 33 0 0 0 0 2 0
## 34 0 0 0 0 1 0
## 35 0 0 0 0 0 0
## 36 0 0 0 0 0 0
## 37 0 0 0 0 0 0
## 38 0 0 0 0 0 0
## 39 0 0 0 0 0 0
## 40 0 0 0 0 0 0
## 41 0 0 0 0 2 0
## 42 0 0 0 0 0 0
## 43 0 0 0 0 0 0
## 44 0 0 0 0 0 0
## 45 0 0 0 0 0 0
## 49 0 0 0 0 1 0
##
## New Zealand North Korea Norway Norwegier Turnverein, Brooklyn Panama
## 10 0 0 0 0 0
## 11 0 0 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 0 0
## 14 0 30 0 0 0
## 15 0 12 11 0 0
## 16 0 24 24 0 0
## 17 10 28 10 0 0
## 18 10 5 2 0 0
## 19 5 36 28 0 4
## 20 0 7 25 0 0
## 21 7 8 9 0 0
## 22 7 19 24 1 0
## 23 0 23 9 0 0
## 24 5 15 44 1 0
## 25 7 7 33 0 0
## 26 0 8 31 0 0
## 27 0 13 18 0 0
## 28 0 7 10 0 0
## 29 0 0 23 0 0
## 30 0 8 22 1 0
## 31 0 1 5 0 0
## 32 0 8 1 0 0
## 33 0 0 1 0 0
## 34 0 0 2 0 0
## 35 0 0 10 0 0
## 36 0 0 0 0 0
## 37 0 0 3 1 0
## 38 0 0 0 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 0 0
## 42 0 0 0 0 0
## 43 0 0 0 0 0
## 44 0 0 0 0 0
## 45 0 0 0 0 0
## 49 0 0 0 0 0
##
## Passaic Turnverein, Passaic Peru Philadelphia Turngemeinde, Philadelphia
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
## 15 0 0 0
## 16 0 0 0
## 17 0 4 0
## 18 0 0 0
## 19 0 0 0
## 20 0 0 0
## 21 0 0 0
## 22 0 0 0
## 23 1 0 0
## 24 0 0 1
## 25 0 0 1
## 26 0 0 1
## 27 0 0 1
## 28 0 0 1
## 29 0 0 0
## 30 0 0 0
## 31 0 0 1
## 32 0 0 0
## 33 0 0 0
## 34 0 0 0
## 35 0 0 0
## 36 0 0 0
## 37 0 0 0
## 38 0 0 0
## 39 0 0 0
## 40 0 0 0
## 41 0 0 0
## 42 0 0 0
## 43 0 0 0
## 44 0 0 0
## 45 0 0 0
## 49 0 0 0
##
## Philippines Pistoja/Firenze Poland Portugal Puerto Rico Romania Russia
## 10 0 0 0 0 0 0 0
## 11 0 0 0 0 0 0 0
## 12 0 0 0 0 0 0 0
## 13 0 0 6 0 0 6 0
## 14 0 0 6 0 0 30 0
## 15 0 0 12 5 4 65 10
## 16 0 0 24 10 5 81 43
## 17 0 0 13 0 0 66 55
## 18 9 0 54 17 0 80 20
## 19 0 1 14 0 0 62 44
## 20 5 0 52 21 14 77 50
## 21 0 0 50 0 14 131 53
## 22 0 0 97 5 0 69 27
## 23 3 0 19 12 0 110 35
## 24 3 0 36 29 7 140 26
## 25 0 0 64 8 0 87 21
## 26 0 0 37 12 1 53 3
## 27 0 0 8 0 0 26 7
## 28 0 0 32 8 0 15 9
## 29 0 0 31 8 0 42 5
## 30 0 0 37 0 0 14 0
## 31 0 0 18 11 0 0 0
## 32 0 0 8 0 0 0 0
## 33 0 0 8 0 0 0 0
## 34 0 0 15 0 0 8 0
## 35 0 0 0 0 0 3 0
## 36 0 0 0 0 0 0 0
## 37 0 0 0 0 0 0 0
## 38 0 0 0 0 0 0 0
## 39 0 0 0 0 0 0 0
## 40 0 0 0 0 0 0 0
## 41 0 0 0 0 0 0 0
## 42 0 0 0 0 0 0 0
## 43 0 0 0 0 0 0 0
## 44 0 0 0 0 0 0 0
## 45 0 0 0 0 0 0 0
## 49 0 0 0 0 0 0 0
##
## Saar San Marino Singapore Slovakia Slovenia Socialer Turnverein, Detroit
## 10 0 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 0
## 13 0 0 0 0 0 0
## 14 0 0 0 0 0 0
## 15 0 0 0 5 0 0
## 16 0 0 0 3 0 0
## 17 0 0 0 0 0 0
## 18 0 0 0 5 3 0
## 19 0 0 0 9 5 0
## 20 24 0 0 0 4 0
## 21 16 0 0 0 0 0
## 22 0 7 0 0 1 1
## 23 0 0 4 0 2 1
## 24 0 0 0 4 0 0
## 25 0 0 0 0 7 0
## 26 0 0 0 0 0 0
## 27 0 0 0 2 0 0
## 28 0 0 0 0 0 0
## 29 0 0 0 0 0 0
## 30 0 0 0 0 0 0
## 31 0 0 0 0 2 0
## 32 0 0 0 0 0 0
## 33 0 0 0 0 0 0
## 34 0 0 0 0 0 0
## 35 0 0 0 0 0 0
## 36 0 0 0 0 0 0
## 37 0 0 0 0 0 0
## 38 0 0 0 0 0 0
## 39 0 0 0 0 0 0
## 40 0 0 0 0 0 0
## 41 8 0 0 0 0 0
## 42 0 0 0 0 0 0
## 43 0 0 0 0 0 0
## 44 0 0 0 0 0 0
## 45 0 0 0 0 0 0
## 49 0 0 0 0 0 0
##
## South Africa South Korea South St Louis Turnverein, St Louis Soviet Union
## 10 0 0 0 0
## 11 0 0 0 0
## 12 0 0 0 0
## 13 0 0 0 0
## 14 0 5 0 6
## 15 0 28 0 30
## 16 0 11 0 18
## 17 0 34 0 32
## 18 5 23 0 50
## 19 0 66 1 85
## 20 5 63 1 50
## 21 0 44 0 65
## 22 6 31 0 76
## 23 7 72 1 89
## 24 0 43 0 44
## 25 7 23 0 35
## 26 0 9 0 15
## 27 0 17 0 60
## 28 7 28 1 40
## 29 0 5 0 29
## 30 7 6 1 21
## 31 0 0 1 14
## 32 0 4 0 8
## 33 0 0 0 0
## 34 0 0 0 22
## 35 0 0 0 8
## 36 0 0 0 0
## 37 0 0 0 0
## 38 7 0 0 0
## 39 0 0 0 0
## 40 0 0 0 0
## 41 0 0 0 0
## 42 0 0 0 0
## 43 0 0 0 0
## 44 0 0 0 0
## 45 0 0 0 0
## 49 0 0 0 0
##
## Spain Sweden Switzerland Trinidad and Tobago Tunisia Turkey
## 10 0 0 0 0 0 0
## 11 0 0 0 0 0 0
## 12 0 0 0 0 0 0
## 13 0 0 0 0 0 0
## 14 25 0 6 0 0 0
## 15 45 5 42 0 0 0
## 16 53 5 12 0 0 0
## 17 35 39 0 0 0 4
## 18 81 30 21 0 0 0
## 19 64 28 25 4 0 0
## 20 58 32 47 0 0 0
## 21 17 39 47 0 0 1
## 22 43 63 46 0 7 0
## 23 52 45 117 0 0 6
## 24 88 52 80 0 0 0
## 25 28 35 45 0 0 0
## 26 22 10 86 0 0 0
## 27 10 50 53 0 0 0
## 28 12 29 24 0 0 0
## 29 0 2 47 0 0 0
## 30 0 8 20 0 1 0
## 31 0 0 51 0 0 0
## 32 0 15 8 0 0 0
## 33 0 2 23 0 0 0
## 34 0 0 24 0 0 0
## 35 0 0 7 0 0 0
## 36 0 0 0 0 0 0
## 37 0 0 0 0 0 0
## 38 0 0 0 0 0 0
## 39 0 0 0 0 0 0
## 40 0 0 0 0 0 0
## 41 0 0 0 0 0 0
## 42 0 0 0 0 0 0
## 43 0 0 0 0 0 0
## 44 0 0 0 0 0 0
## 45 0 0 0 0 0 0
## 49 0 0 0 0 0 0
##
## Turnverein Vorwrts, Chicago Turnverein Vorwrts, Cleveland Ukraine
## 10 0 0 0
## 11 0 0 0
## 12 0 0 0
## 13 0 0 0
## 14 0 0 0
## 15 0 0 17
## 16 0 0 43
## 17 0 0 21
## 18 0 0 25
## 19 0 0 36
## 20 0 0 30
## 21 0 0 8
## 22 1 1 39
## 23 0 0 45
## 24 1 2 7
## 25 0 1 41
## 26 0 0 13
## 27 0 0 0
## 28 0 1 8
## 29 1 1 0
## 30 0 0 3
## 31 0 0 0
## 32 0 0 0
## 33 0 0 0
## 34 0 0 0
## 35 0 0 0
## 36 0 0 0
## 37 0 0 0
## 38 0 0 0
## 39 0 0 0
## 40 0 0 0
## 41 0 0 0
## 42 0 0 0
## 43 0 0 0
## 44 0 0 0
## 45 0 0 0
## 49 0 0 0
##
## Unified Team United Arab Republic United States Uzbekistan Venezuela
## 10 0 0 0 0 0
## 11 0 0 0 0 0
## 12 0 0 0 0 0
## 13 0 0 0 0 0
## 14 0 0 12 0 0
## 15 12 0 63 0 5
## 16 0 0 104 4 0
## 17 12 0 95 5 0
## 18 6 0 101 0 0
## 19 14 0 133 0 0
## 20 8 0 78 0 0
## 21 16 0 179 5 0
## 22 16 0 154 0 4
## 23 0 0 140 0 6
## 24 0 0 177 0 0
## 25 0 0 125 11 0
## 26 0 0 111 0 4
## 27 0 0 44 0 0
## 28 0 8 59 0 0
## 29 0 0 48 2 0
## 30 0 0 79 0 4
## 31 0 0 16 0 0
## 32 0 0 24 0 0
## 33 0 0 17 6 0
## 34 0 0 18 0 0
## 35 0 0 15 0 0
## 36 0 0 17 0 0
## 37 0 0 12 0 0
## 38 0 0 9 0 0
## 39 0 0 0 0 0
## 40 0 0 0 0 0
## 41 0 0 0 2 0
## 42 0 0 0 0 0
## 43 0 0 0 0 0
## 44 0 0 0 0 0
## 45 0 0 0 0 0
## 49 0 0 0 0 0
##
## Vietnam West Germany Yemen Yugoslavia
## 10 0 0 0 0
## 11 0 0 0 0
## 12 0 0 0 0
## 13 0 0 0 0
## 14 0 12 0 0
## 15 0 29 0 6
## 16 0 24 0 0
## 17 0 30 0 6
## 18 0 29 0 7
## 19 5 12 0 18
## 20 2 28 0 38
## 21 0 48 4 25
## 22 0 16 0 34
## 23 2 48 0 14
## 24 4 24 0 91
## 25 0 22 0 37
## 26 0 32 0 51
## 27 0 16 0 23
## 28 1 8 0 46
## 29 0 0 0 23
## 30 0 8 0 24
## 31 0 8 0 17
## 32 0 0 0 8
## 33 0 0 0 8
## 34 0 0 0 25
## 35 0 0 0 23
## 36 0 0 0 8
## 37 0 0 0 8
## 38 0 0 0 16
## 39 0 0 0 0
## 40 0 0 0 0
## 41 0 0 0 0
## 42 0 0 0 0
## 43 0 0 0 0
## 44 0 0 0 0
## 45 0 0 0 0
## 49 0 0 0 0
Discussion: I used “summary” to make a summary statistic of the dataset, then I used the $ sign to access a specific column in the dataset (which is height). For the table part, I used “table” to make a table, then I put the dataset name and used the dollar sign to grab age from the dataset, then I did the same thing for the team.