Import data
# excel file
data <- read_excel("../00_data/myData.xlsx")
data
## # A tibble: 854 × 7
## geoid name year geometry total_pop plumbing percent_lacking_plum…¹
## <dbl> <chr> <dbl> <chr> <dbl> <chr> <chr>
## 1 1003 Baldwin Count… 2023 "list(l… 253507 271 0.10690040117235422
## 2 1069 Houston Count… 2023 "list(l… 108462 30 0.02765945676826907
## 3 6037 Los Angeles C… 2023 "list(l… 9663345 5248 0.05430831663362946
## 4 6087 Santa Cruz Co… 2023 "list(l… 261547 187 0.07149766581149851
## 5 6097 Sonoma County… 2023 "list(l… 481812 308 0.06392534847616912
## 6 6013 Contra Costa … 2023 "list(l… 1155025 517 0.04476093591047813
## 7 10001 Kent County, … 2023 "list(l… 189789 4 0.002107603707274921
## 8 12017 Citrus County… 2023 "list(l… 166696 198 0.11877909487930124
## 9 12071 Lee County, F… 2023 "list(l… 834573 1269 0.15205380476003896
## 10 12101 Pasco County,… 2023 "list(l… 632996 813 0.12843683056449015
## # ℹ 844 more rows
## # ℹ abbreviated name: ¹percent_lacking_plumbing
Plot prices
data %>%
ggplot(aes(plumbing)) +
geom_bar()
