Tabla sin frecuencias | Tablas con frecuencias | |
---|---|---|
Momentos no centrados | \(a_r=\frac{1}{n}\sum_{i=1}^n
x_i^r\) Caso particular |
\(a_r=\frac{1}{n}\sum_{i=1}^k
x_i^rn_i\) \(a_1=\bar{x}\) |
Momentos centrados | \(m_r=\frac{1}{n}\sum_{i=1}^n
(x_i-\bar{x})^r\) Caso particular |
\(m_r=\frac{1}{n}\sum_{i=1}^k
(x_i-\bar{x})^rn_i\) \(m_2=a^2-a_1^2=S^2\) |
Tabla sin frecuencias | Tablas con frecuencias | |
---|---|---|
Media aritmética | \(\bar{x}=\frac{1}{n}\sum_{i=1}^n x_i\) | \(\bar{x}=\frac{1}{n}\sum_{i=1}^k x_in_i\) |
Media geométrica | \(G=\sqrt[n]{\prod^n_{i=1}x_i}\) | \(G=\sqrt[n]{\prod^n_{i=1}x^{n_i}_i}\) |
Media armónica | \(H=\frac{n}{\sum^n_{i=1}\frac{1}{x_i}}\) | \(H=\frac{n}{\sum^k_{i=1}\frac{n_i}{x_i}}\) |
Discretas | Continuas | |
---|---|---|
Moda | \(x_i:f_i=\max{f_i}\) | Intervalo modal: \(max\{h_i\}\) \(Mo(I)=\frac{L_{i-1}+L_i}{2}\) \(Mo(II)=L_{i-1}+\frac{h_{i+1}}{h_{i-1}+h_{i+1}}a_i\) \(Mo(III)=L_{i-1}+\frac{h_i-h_{i-1}}{(h_i-h_{i-1})+(h_i-h_{i+1})}a_i\) |
Mediana | \(N_i=\frac{n}{2}=>Me=\frac{x_i+x_{i+1}}{2}\)
\(N_i>\frac{n}{2}=>Me=x_i\) |
\(N_i=\frac{n}{2}=>Me=L_i\) \(Me=L_{i-1}+\frac{\frac{n}{2}-N_{i-1}}{N_i-N_{i-1}}a_i\) |
Percentiles | \(N_i=\alpha\frac{n}{100}=>P_\alpha=\frac{x_i+x_{i+1}}{2}\)
\(N_i>\alpha\frac{n}{100}=>P_\alpha=x_i\) |
\(N_i=\alpha\frac{n}{100}=>P_\alpha=L_i\) \(P_\alpha=L_{i-1}+\frac{\alpha\frac{n}{100}-N_{i-1}}{N_i-N_{i-1}}a_i\) |
Tabla sin frecuencias | Tablas con frecuencias | |
---|---|---|
Varianza | \(S^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2\) \(S^2=a_2-a_1^2=\frac{1}{n}\sum_{i=1}^nx_i^2-\bar{x}^2\) |
\(S^2=\frac{1}{n}\sum_{i=1}^k(x_i-\bar{x})^2n_i\)
\(S^2=a_2-a_1^2=\frac{1}{n}\sum_{i=1}^kx_i^2n_i-\bar{x}^2\) |
Rango | \(R=máximo-mínimo\) |
Rango intercuartílico | \(R_1=Q_3-Q_1=P_{75}-P_{25}\) |
Desviación típica | \(S=\sqrt{S^2}\) |
Coeficiente de variación | \(CV=\frac{S}{\bar{x}}\) |
Coeficiente de asimetría | \(g_1=\frac{m_3}{S^3}\) |
Coeficiente de curtosis | \(g_2=\frac{m_4}{S^4}\) |
Índice de Gini | \(I_G=\frac{\sum_{i=1}^{k-1}(p_i-q_i)}{\sum_{i=1}^{k-1}p_i}=1-\frac{\sum_{i=1}^{k-1}q_i}{\sum_{i=1}^{k-1}p_i}\qquad 0\leq I_G \leq 1\) |