BT-Settl preparation for IPAC (T) based on class of features 1-Fs/Fc. Doppler compensated. V2 means to use new theoretical T brought by LSB instead of the initial ones also from LSB. ========================================================

Introduction

After the pre-processing analysis carried out for M stars within the IPAC dataset, we will proceed with a similar methodology to the one ran for IRTF.

Target T will be between 2000 K and 4200 K

Prediction for Temperature

We will use the I-Band according to GA models noised by SNR=50 and SNR=10 as well as the features proposed by Cestti et al. also noised by SNR=50 and SNR=10.

Recovering already built models

# Procesado del genético de Tª 
range_elem<-function(z,l,bi){
  look=function(x,l,y){
    j<-which(y>= as.numeric(x[l]))[1];
    k<-(which(y>as.numeric(x[(l+1)]))[1])-1; 
    return(c(j,k))
  }
  y=z$data[[1]][,1]
  lm<-t(apply(bi,1,look,l,y))
  rownames(lm)<-bi[,1]
  colnames(lm)<-c("From","To")
  return(lm)
}
int_spec<-function(x,idx,norm=0){
    y<-x$data[[1]][eval(parse(text=idx)),]
    xz<-diff(as.numeric(y[,1]),1)
    yz<-as.numeric(y[,2])
    if ( norm > 0 ){
      z<-sum(xz)
    } else {
      z<-sum(xz*rollmean(yz,2))
    }
    return(z)
}
#
feature_extr<-function(sn,bp){
  sig<-sn[1]
  noi<-sn[2]
  nof<-sn[3] # Allowing to consider 2 bands as the paper
  Fcont<-unlist(lapply(bp,int_spec,noi,0))/
         unlist(lapply(bp,int_spec,noi,1))
  if (! is.na(nof)){ # In case of two bands => average
    Fcont2=unlist(lapply(bp,int_spec,nof,0))/
           unlist(lapply(bp,int_spec,nof,1))
    Fcont = (Fcont + Fcont2) /2.
  }
  fea<-unlist(lapply(bp,int_spec,sig,1))-
       unlist(lapply(bp,int_spec,sig,0))/Fcont
  return(fea)
}
#
sacar=function(x,pos=2) {
  if ( length(x) < pos ) {
    return(NA);
  }
  return(x[pos]);
}
#
###################### 
#
# Loading the object BT-Settl
if (file.exists("~/git/M_prep_IPAC/BT-Settl-IPAC-2011-2013-Noise.RData")) {
  load( file="~/git/M_prep_IPAC/BT-Settl-IPAC-2011-2013-Noise.RData")
} else {
  cat("ERROR: ~/git/M_prep_IPAC/BT-Settl-IPAC-2011-2013-Noise.RData NOT FOUND !!!")  
  exit(2)
}
#

Now, we will read the M stars from the IPAC dataset in fits format.

Reading the IPAC dataset

#
scaling=function(x,xlim=NULL,xp=NULL) {
  y=x
  if (! is.null(y$factors)) {
    y$data[,2]=y$data[,2]*y$factors
  }
  if ( is.null(xlim)){
    ixp=rep(TRUE,nrow(y$data))
    xlim=range(y$data[,1])
  } 
  if ( ! is.null(xp)) {
      xp = xp[(xp > xlim[1]) & (xp < xlim[2])]
      xli0 = y$data[rev(which(y$data[,1] < xlim[1]))[1],1] - 0.001 # Rounding ...
      xli1 = y$data[which(y$data[,1]>xlim[2])[1],1] + 0.001 # Rounding ...
      ixp  = (y$data[,1] >= xli0 & y$data[,1] <= xli1)
  } else {
      ixp = (y$data[,1]>= xlim[1] & y$data[,1] <= xlim[2])
  }
  z=y$data[ixp,]
  jp=rep(0,nrow(z)+1)
#  jp[is.finite(z[,2])]=1  # LSB has requested to interpolate the holes 30/7/2014
  jp[nrow(z)+1]=1
  zp=diff(jp)
  ip=which(zp != 0)
  ini=1
  j=0
  y$data=list()  
  for (i in ip) {
    if (zp[i] != -1 ) {
      j=j+1 
      y$data[[j]]=z[ini:i,]
    } else {
      ini=i+1
    }
  }
  y$nch=j
  y$factors=rep(NA,y$nch)
  for (i in 1:y$nch) {
    if ( is.na(y$data[[i]][nrow(y$data[[i]]),2])) {
      kk = rev(which(! is.na(y$data[[i]][,2])))[1]
      y$data[[i]][nrow(y$data[[i]]),2]=y$data[[i]][kk,2]
    }
    if ( is.na(y$data[[i]][1,2])) {
      kk = which(! is.na(y$data[[i]][,2]))[1]
      y$data[[i]][1,2]=y$data[[i]][kk,2]
    }
    if ( ! is.null(xp)) {
      yp=(approx(y$data[[i]][,1],y$data[[i]][,2],xout=xp))$y
      y$data[[i]]=data.frame(x=xp,y=yp)
    } else {
      yp=(approx(y$data[[i]][,1],y$data[[i]][,2],xout=y$data[[i]][,1]))$y
      y$data[[i]]=data.frame(x=y$data[[i]][,1],y=yp)
    }
    y$factors[i]=sum(rollmean(y$data[[i]][,2],2)*diff(y$data[[i]][,1]))
  }
  ss=sum(y$factors)
  for (i in 1:y$nch) {  
    y$data[[i]][,2]=y$data[[i]][,2]/ss      
  }
  return(y)
}
#
pinta=function(x,cortes=NULL,borders=FALSE, boundary=FALSE, close=FALSE,
               xlim=NULL, ylim=NULL,plt=NULL,width=12,height=8,...){
  if (is.null(x$nch)){
    nch=1
  } else {
    nch=x$nch
  }
  if ( length(xlim) < 2 ) {
    xmin=min(x$data[[1]][,1])
    xmax=max(x$data[[nch]][,1])
    xl=c(xmin,xmax)
  } else {
    xl=xlim
  }
  if ( length(ylim) < 2 ) {
    ymin=min(x$data[[1]][,2])
    ymax=max(x$data[[1]][,2])
    if ( nch > 1 ) {
      for (i in 2:nch){
        ymin=min(ymin,x$data[[i]][,2])
        ymax=max(ymax,x$data[[i]][,2])    
      }
    }
    yl=c(ymin,ymax)
  } else {
    yl = ylim
  }
  if (! is.null(plt) ) {
    pdf(file=plt,width,height)
  }
  if ( boundary) {
    plot(0,xlim=xl,ylim=yl,...)
  }
  for (i in 1:nch) {
    lines(x$data[[i]],...)
  }
  for (i in cortes) {
    abline(v=i[1],col=2)
    abline(v=i[2],col=2)
  }
  if ( borders) {
    for (i in nch) {
      abline(v=min(x$data[[i]][,1]),col=3)
      abline(v=max(x$data[[i]][,1]),col=3)
    }
  }
  if ( close ) {
    dev.off()
  }
}
setwd('~/git/M_prep_IPAC')
#

A number of 595 have been readed from the individual spectra dataset.

Preparation of potential features for T

#
if ( file.exists("~/git/M_prep_IPAC/Features_BT-settl_v3.RData")) {
  load("~/git/M_prep_IPAC/Features_BT-settl_v3.RData")
} else {
  bpy=do.call(rbind,lapply(bp_clean,function(x){return(x$data[[1]][,2])}))
  bpy10=do.call(rbind,lapply(bp_10,function(x){return(x$data[[1]][,2])}))
  bpy50=do.call(rbind,lapply(bp_50,function(x){return(x$data[[1]][,2])}))  
  YPT=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[1])}))
  YPG=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[2])}))
  YPM=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[3])}))
  vf=as.character(bp_clean[[1]]$data[[1]][,1])
  colnames(bpy)=vf
  colnames(bpy10)=vf
  colnames(bpy50)=vf
  bfy=do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])}))
  colnames(bfy)=vf
  #
  area=function(v,nv) {
    y=data.frame(x=as.numeric(nv),y=v)
    xz = diff(as.numeric(y[,1]),1)
    yz = as.numeric(y[,2])
    z  = sum(xz*rollmean(yz,2))
    return(z)
  }
  #
######################################################################
  #
  siz=10
  bandas=list()
  bfndas=list()
  bandas10=list()
  bandas50=list()
  for (i in seq(1,siz,5)) { # LSB asked for steps of 5 pixels
    idx=paste("s=",i,sep="")
    lvf=vf
    if ( i > 1) {
      lvf=vf[-c(1:(i-1))]
    }
    ff=as.factor(sort(rep(1:ceiling(length(lvf)/siz),siz))[1:length(lvf)])
    st=split(lvf,ff)
    for (j in 1:length(st)) {
      if (length(st[[j]]) < siz)
        st[[j]] = NULL
    }
    lst = length(st)
    bandas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy)))
    bfndas[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bfy)))
    bandas10[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy10)))
    bandas50[[idx]]=list(names= as.vector(unlist(lapply(st,
                        function(x){return(paste(range(x),collapse="-"))}))),
                      mat=matrix(NA,ncol=lst,nrow=nrow(bpy50)))
    for (j in 1:lst) {
      bandas[[idx]]$mat[,j]=apply(bpy[,st[[j]]],1,area,st[[j]])
      bandas10[[idx]]$mat[,j]=apply(bpy10[,st[[j]]],1,area,st[[j]])
      bandas50[[idx]]$mat[,j]=apply(bpy50[,st[[j]]],1,area,st[[j]])      
    }
    for (j in 1:lst) {
      bfndas[[idx]]$mat[,j]=apply(bfy[,st[[j]]],1,area,st[[j]])     
    }
  }
  #
  save(bpy,bfy,bandas,bfndas,vf, bpy10,bpy50,st,siz,
       bandas10,bandas50,YPT,YPG,YPM, 
       file="~/git/M_prep_IPAC/Features_BT-settl_v3.RData")
}
#

Otras features de genéticos que evolucionan construyendo las features (Población 8000 individuos, 1000 evoluciones)

#
#
require(GA)
require(doParallel)
require(plyr)
#
#
area=function(v,nv) {
  y=data.frame(x=as.numeric(nv),y=v)
  xz = diff(as.numeric(y[,1]),1)
  yz = as.numeric(y[,2])
  z  = sum(xz*rollmean(yz,2))
  return(z)
}
fitness = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas[[cnjts[bj]]]$names[idxj]))    
    X[,(i)]=wini-bandas[[cnjts[bi]]]$mat[,idxi] / (bandas[[cnjts[bj]]]$mat[,idxj]/winj)
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
fitness10 = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas10[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas10[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas10[[cnjts[bj]]]$names[idxj]))
    X[,(i)]=wini-bandas10[[cnjts[bi]]]$mat[,idxi] / (bandas10[[cnjts[bj]]]$mat[,idxj]/winj)    
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
fitness50 = function(string) {
  par = decode(string)
  if ( 0 %in% unlist(apply(par,1,sd)) ) {
    return (-1000*NBLK*NBITS)
  }
  if ( length(unique(sort(par[,1]))) < nrow(par) |
         length(unique(sort(par[,2]))) < nrow(par) ) {
    return (-1000*NBLK*NBITS)
  }
  X   = as.data.frame(matrix(0,nrow=nrow(bandas50[[cnjts[1]]]$mat),ncol=(nrow(par))))
  colnames(X)[1] ="Intercept"
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1    
    wini=-eval(parse(text=bandas50[[cnjts[bi]]]$names[idxi]))
    winj=-eval(parse(text=bandas50[[cnjts[bj]]]$names[idxj]))
    X[,(i)]=wini-bandas50[[cnjts[bi]]]$mat[,idxi] / (bandas50[[cnjts[bj]]]$mat[,idxj]/winj) 
    colnames(X)[(i)] = paste(par[i,],collapse="-")
  }
  mod = lm.fit(as.matrix(X), y)
  class(mod) = "lm"
  return( -BIC(mod))
}
#
SelFeatures=function(x,sets=cnjts,dat=bandas,fitness.=fitness,pp=FALSE){
  pos=which.max(as.numeric(unlist(ldply(x@bestSol,fitness.,.parallel=pp))))
  sol=x@bestSol[[pos]]
  par = decode(sol)  
  res = list()
  for ( i in 1:nrow(par)) {    
    bi=par[i,1] %% NBLK
    bj=par[i,2] %% NBLK
    if ( bi==0 ) bi=NBLK
    if ( bj==0 ) bj=NBLK
    idxi=(par[i,1] %/% NBLK) +1
    idxj=(par[i,2] %/% NBLK) +1  
    res[[i]]=list(set1=sets[bi],pos1=idxi,set2=sets[bj],pos2=idxj,par=par[i,],
                  x=dat[[sets[bi]]]$mat[,idxi],
                  x0=dat[[sets[bj]]]$mat[,idxj],
                  name=dat[[sets[bi]]]$nam[idxi],
                  name0=dat[[sets[bj]]]$nam[idxj])
  }
  return(res)
}
#
FeaturesExt=function(x,num,sets=cnjts,dat=bandas,fitness.=fitness,pp=FALSE){
  vals=as.numeric(unlist(ldply(x@bestSol,fitness.,.parallel=pp)))
  fiveval=summary(vals)
  uv    = unique(sort(vals,decreasing=TRUE))
  uvals = uv[1:min(num,length(uv))]
  isols=rep(0,length(uvals))
  for (i in 1:length(uvals)) {
    isols[i] = which(vals==uvals[i])[1]
  }
  res=NA
  if ( length(isols) > 0) {
    par=decode(x@bestSol[[1]])
    res = as.data.frame(matrix(NA,nrow=nrow(par),ncol=(2*length(isols))))
    nam = as.data.frame(matrix(NA,nrow=nrow(par),ncol=(2*length(isols))))    
    for (j in 1:length(isols)) {
      sol=x@bestSol[[isols[j]]]
      par = decode(sol)  
      res[,(2*(j-1)+1):(2*j)]=par
      names(res)[(2*(j-1)+1):(2*j)] = c(paste(j,":s",sep=""),paste(j,":c",sep=""))
      for ( i in 1:nrow(par)) {    
        bi=par[i,1] %% NBLK
        bj=par[i,2] %% NBLK
        if ( bi==0 ) bi=NBLK
        if ( bj==0 ) bj=NBLK
        idxi=(par[i,1] %/% NBLK) +1
        idxj=(par[i,2] %/% NBLK) +1  
        nam[i,(2*(j-1)+1)]=dat[[sets[bi]]]$nam[idxi]
        nam[i,(2*j)]=dat[[sets[bj]]]$nam[idxj]
      }
      names(nam)[(2*(j-1)+1):(2*j)] = c(paste(j,":s",sep=""),paste(j,":c",sep=""))        
    }
  }
  return(list(par=res,name=nam,pos=isols,vpos=vals[isols],fivevals=fiveval))
}
#
SelFeaturesFixed=function(x,sets=cnjts,dat=bandas){
  nr = nrow(x)
  res = list()
  for ( i in 1:nr) {    
    j=1
    bi=0
    while (j <= length(sets)) {
      if (length(which(dat[[j]]$names ==x[i,1]))) {
        bi = j
        idxi = which(dat[[j]]$names ==x[i,1])
      }
      j = j +1
    }
    if ( bi==0) {
     stop(paste("feature ",x[i,1], " does not match much !",sep=""))
    }
    j=1
    bj=0
    while (j <= length(sets)) {
      if (length(which(dat[[j]]$names ==x[i,2]))) {
        bj = j
        idxj = which(dat[[j]]$names ==x[i,2])
      }
      j = j +1
    }
    if ( bj==0) {
     stop(paste("feature ",x[i,1], " does not match much !",sep=""))
    }
    res[[i]]=list(set1=sets[bi],pos1=idxi,set2=sets[bj],pos2=idxj,par=NA,
                  x=dat[[sets[bi]]]$mat[,idxi],
                  x0=dat[[sets[bj]]]$mat[,idxj],
                  name=dat[[sets[bi]]]$nam[idxi],
                  name0=dat[[sets[bj]]]$nam[idxj])
  }
  return(res)
}
#
#
decode = function(string) {
  string = gray2binary(string)
  n = binary2decimal(string[1:NBITS])
  c = binary2decimal(string[(NBITS + 1):(2*NBITS)])
  res = data.frame(p1=n%%MAXV,p2=c%%MAXV)
  ini = 2 * NBITS
  if ( NG > 1) {
    for (i in 2:NG) {
      n = binary2decimal(string[(ini+1):(ini+NBITS)])
      c = binary2decimal(string[(ini + NBITS + 1):(ini + 2*NBITS)])
      res = rbind(res, c(n%%MAXV,c%%MAXV))
      ini = ini + 2*NBITS
    }
  }
  return(res)
}
#
encode = function(res,nbits=NBITS) {
  if (! is.data.frame(res)) {
    warning(paste("ENCODE: First parameter is not data.frame:",str(res),sep=" "))
    return(NULL)
  }
  cad=rep(0,ncol(res)*nrow(res)*nbits)
  for (i in 1:nrow(res)) {
    for (j in 1:ncol(res)) {
      k=((i-1)*ncol(res) + (j - 1))*nbits+1
      cad[k:(k+nbits-1)]=decimal2binary(res[i,j],nbits)
    }
  }
  return(binary2gray(cad))
}
#
#
NITER=9
if ( file.exists("~/git/M_prep_IPAC/GA_NT11F2_IPAC-v2.RData")) {
  j=1
  load("~/git/M_prep_IPAC/GA_NT11F2_IPAC-v2.RData")
  tt50=list()
  GAs50 = list()
  solsT50=list()
  tt10=list()
  GAs10 = list()
  solsT10=list()
  tt=list()
  GAs=list()
  solsT=list()
  while(j <= NITER) {
    cat(paste("Reading Iteration:",j,"<br>",sep=""))
    flush.console()
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_50_f2_IPAC-v2.RData",sep=""))
    tt50[[j]]= t_tot
    GAs50[[j]]=GA1
    solsT50[[j]]=FeaturesExt(GA1,12)
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_10_f2_IPAC-v2.RData",sep=""))
    tt10[[j]]= t_tot
    GAs10[[j]]=GA1
    solsT10[[j]]=FeaturesExt(GA1,12)
    load(paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_f2_IPAC-v2.RData",sep=""))
    tt[[j]]= t_tot
    GAs[[j]]=GA1
    solsT[[j]]=FeaturesExt(GA1,12)    
    j = j+1
  }
} else {
#  cnjts = c("s=1","s=6","s=11","s=16","s=21","s=26")  
  cnjts = c("s=1","s=6")
  bpy=do.call(rbind,lapply(bp_clean,function(x){return(x$data[[1]][,2])}))
  YPT=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[1])}))
  YPG=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[2])}))
  YPM=do.call(rbind,lapply(bp_clean,function(x){return(x$stellarp[3])}))  
  vf=as.character(bp_clean[[1]]$data[[1]][,1])
  colnames(bpy)=vf
  bfy=do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])}))
  colnames(bfy)=vf
  #
  siz=10
#
# bands* are already defined in ~/git/M_prep_IPAC/Features_BT-settl_v3-interp2.RData
#
#   bandas=list()
#   bfndas=list()
#   bandas10=list()
#   bandas50=list()
#   for (i in seq(1,10,5)) { # LSB asked for steps of 5 pixels
#     idx=paste("s=",i,sep="")
#     lvf=vf
#     if ( i > 1) {
#       lvf=vf[-c(1:(i-1))]
#     }
#     ff=as.factor(sort(rep(1:ceiling(length(lvf)/siz),siz))[1:length(lvf)])
#     st=split(lvf,ff)
#     for (j in 1:length(st)) {
#       if (length(st[[j]]) < siz)
#         st[[j]] = NULL
#     }
#     lst = length(st)
#     bandas[[idx]]=list(names= as.vector(unlist(lapply(st,
#                         function(x){return(paste(range(x),collapse="-"))}))),
#                       mat=matrix(NA,ncol=lst,nrow=nrow(bpy)))
#     bfndas[[idx]]=list(names= as.vector(unlist(lapply(st,
#                         function(x){return(paste(range(x),collapse="-"))}))),
#                       mat=matrix(NA,ncol=lst,nrow=nrow(bfy)))
#     bandas10[[idx]]=list(names= as.vector(unlist(lapply(st,
#                         function(x){return(paste(range(x),collapse="-"))}))),
#                       mat=matrix(NA,ncol=lst,nrow=nrow(bpy10)))
#     bandas50[[idx]]=list(names= as.vector(unlist(lapply(st,
#                         function(x){return(paste(range(x),collapse="-"))}))),
#                       mat=matrix(NA,ncol=lst,nrow=nrow(bpy50)))
#     for (j in 1:lst) {
#       bandas[[idx]]$mat[,j]=apply(bpy[,st[[j]]],1,area,st[[j]])
#       bandas10[[idx]]$mat[,j]=apply(bpy10[,st[[j]]],1,area,st[[j]])
#       bandas50[[idx]]$mat[,j]=apply(bpy50[,st[[j]]],1,area,st[[j]])      
#     }
#     for (j in 1:lst) {
#       bfndas[[idx]]$mat[,j]=apply(bfy[,st[[j]]],1,area,st[[j]])     
#     }
#   }
#   #
  #
  y=as.numeric(unlist(YPT))
  cnjts = c("s=1","s=6")
  NG=10   # Número de Features
  NBLK = length(cnjts)
  NBITS= ceiling(log(NBLK*ncol(bandas[[cnjts[1]]]$mat),2))
  MAXV = ncol(bandas[[cnjts[1]]]$mat)
  #
  save(bpy,bpy10,bpy50,bfy,YPT,YPG,YPM,vf,siz,bandas,bfndas, bandas10,bandas50,
       cnjts,st,NG,NBLK,NBITS,MAXV,y,fitness,encode,decode,
       SelFeatures,file="~/git/M_prep_IPAC/GA_NT11F2_IPAC-v2.RData")
  #
  tt=list()
  GAs = list()
  solsT=list()
  j=1
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt[[j]]= system.time({GA1 = ga("binary", fitness = fitness, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt[[j]]
    GAs[[j]]=GA1
    save(fitness,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_f2_IPAC-v2.RData",sep=""))
    solsT[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }
  #
  print(xtable(ldply(solsT,function(x){return(x$vpos[1])})),type="html")
  #
  j=1
  tt10=list()
  GAs10 = list()
  solsT10=list()
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt10[[j]]= system.time({GA1 = ga("binary", fitness = fitness10, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt10[[j]]
    GAs10[[j]]=GA1
    save(fitness10,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_10_f2_IPAC-v2.RData",sep=""))
    solsT10[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }
  #
  print(xtable(ldply(solsT10,function(x){return(x$vpos[1])})),type="html")
  #
  j=1
  tt50=list()
  GAs50 = list()
  solsT50=list()
  while(j <= NITER) {
    cat(paste("Starting Iteration:",j,"<br>",sep=""))
    flush.console()
    tt50[[j]]= system.time({GA1 = ga("binary", fitness = fitness50, nBits = NBITS*2*NG,
        monitor = FALSE,parallel=18,maxiter=1000,popSize=8000,keepBest=TRUE)})
    t_tot=tt50[[j]]
    GAs50[[j]]=GA1
    save(fitness50,encode,decode,SelFeatures,GA1,t_tot,j,
       file=paste("~/git/M_prep_IPAC/GA_T_",sprintf("%02d",j),"_50_f2_IPAC-v2.RData",sep=""))
    solsT50[[j]]=FeaturesExt(GA1,12)
    j=j+1
  }  
  #
  print(xtable(ldply(solsT50,function(x){return(x$vpos[1])})),type="html")
}

Reading Iteration:1
Reading Iteration:2
Reading Iteration:3
Reading Iteration:4
Reading Iteration:5
Reading Iteration:6
Reading Iteration:7
Reading Iteration:8
Reading Iteration:9

#
load("~/git/M_prep_IPAC/Features_BT-settl_v3.RData")
#
# print(xtable(ldply(solsT,function(x){return(x$vpos[1])})),type="html")
# ISOL holds the best solution !
# isol = which.max(as.numeric(ldply(solsT,function(x){return(x$vpos[1])})[,1])) 
# isol
# print(xtable(ldply(solsT10,function(x){return(x$vpos[1])})),type="html")
# ISOL holds the best solution !
# isol10 = which.max(as.numeric(ldply(solsT10,function(x){return(x$vpos[1])})[,1])) 
# isol10 
#
# print(xtable(ldply(solsT50,function(x){return(x$vpos[1])})),type="html")
# ISOL holds the best solution !
# isol50 = which.max(as.numeric(ldply(solsT50,function(x){return(x$vpos[1])})[,1])) 
# isol50 
#

ICA analysis

SNR=10

# We prepare the coefs
if ( file.exists("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp10.RData")) {
  load("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp10.RData")
} else {
  dd2=as.data.frame(do.call(rbind,lapply(bp_10,function(x){return(x$data[[1]][,2])})))
  jd2=JADE(dd2,10)
  ss2=as.data.frame(t(jd2$W %*% t(dd2-jd2$Xmu)))
  ss2[,(ncol(ss2)+1)]=unlist(lapply(bp_10,function(x){return(x$stellarp[1])}))
  colnames(ss2)[ncol(ss2)]="T"
  #
  folds=5
  repeats=1
  myControl = trainControl(method='cv', number=folds, 
                    repeats=repeats, returnResamp='none', 
                    returnData=FALSE, savePredictions=TRUE, 
                    verboseIter=FALSE, allowParallel=TRUE,
                    index=createMultiFolds(ss2[,ncol(ss2)], 
                          k=folds, times=repeats))
 model2=train(ss2[,-ncol(ss2)], ss2[,ncol(ss2)], method='ppr', 
                         trControl=myControl,tuneGrid=expand.grid(.nterms=2:(ncol(ss2)-1)))


  d2=as.data.frame(do.call(rbind,lapply(bf_clean,
                      function(x){return(ldply(x$data,
                                 function(x){return(x)})[,2])})))
  si2=as.data.frame(t(jd2$W %*% t(d2-jd2$Xmu)))
  G_coef2=predict(model2,si2)
  save(G_coef2,si2,d2,model2,myControl,folds,repeats,ss2,jd2,dd2,
       file="~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp10.RData")
}
#

SNR=50

# We prepare the coefs
if ( file.exists("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp50.RData")) {
  load("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp50.RData")
} else {
  dd=as.data.frame(do.call(rbind,lapply(bp_50,function(x){return(x$data[[1]][,2])})))
  jd=JADE(dd,10)
  ss=as.data.frame(t(jd$W %*% t(dd-jd$Xmu)))
  ss[,(ncol(ss)+1)]=unlist(lapply(bp_50,function(x){return(x$stellarp[1])}))
  colnames(ss)[ncol(ss)]="T"
  #
  folds=5
  repeats=1
  myControl = trainControl(method='cv', number=folds, 
                    repeats=repeats, returnResamp='none', 
                    returnData=FALSE, savePredictions=TRUE, 
                    verboseIter=FALSE, allowParallel=TRUE,
                    index=createMultiFolds(ss[,ncol(ss)], 
                          k=folds, times=repeats))
  model=train(ss[,-ncol(ss)], ss[,ncol(ss)], method='ppr', 
                        trControl=myControl,tuneGrid=expand.grid(.nterms=3:(ncol(ss)-1)))
 
  #
  d1=as.data.frame(do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])})))
  si=as.data.frame(t(jd$W %*% t(d1-jd$Xmu)))
  G_coef=predict(model,si)
  save(G_coef,si,dd,model,myControl,folds,repeats,ss,jd,dd,
      file="~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp50.RData")
}
#

SNR=Infinity

# We prepare the coefs
if ( file.exists("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp00.RData")) {
  load("~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp00.RData")
} else {
  dd0=as.data.frame(do.call(rbind,lapply(bp_clean,function(x){return(x$data[[1]][,2])})))
  jd0=JADE(dd0,10)
  ss0=as.data.frame(t(jd0$W %*% t(dd0-jd0$Xmu)))
  ss0[,(ncol(ss0)+1)]=unlist(lapply(bp_clean,function(x){return(x$stellarp[1])}))
  colnames(ss0)[ncol(ss0)]="T"
   #
  folds=5
  repeats=1
  myControl = trainControl(method='cv', number=folds, 
                    repeats=repeats, returnResamp='none', 
                    returnData=FALSE, savePredictions=TRUE, 
                    verboseIter=FALSE, allowParallel=TRUE,
                    index=createMultiFolds(ss[,ncol(ss)], 
                          k=folds, times=repeats))
  model=train(ss0[,-ncol(ss0)], ss0[,ncol(ss0)], method='ppr', 
                        trControl=myControl,tuneGrid=expand.grid(.nterms=3:(ncol(ss0)-1)))
 
  #
  d10=as.data.frame(do.call(rbind,lapply(bf_clean,function(x){return(x$data[[1]][,2])})))
  si0=as.data.frame(t(jd0$W %*% t(d10-jd0$Xmu)))
  G_coef0=predict(model,si0)
  save(G_coef0,si0,dd0,model,myControl,folds,repeats,ss0,jd0,dd0,
      file="~/git/M_prep_IPAC/BT-Settl-2013-PPR_bp00.RData")
}
#

T foreseen by Luminosity models

#
minchid=function(x,lib){
  chid=function(x,y){
    if ( nrow(x$data[[1]]) == nrow(y$data[[1]])) {
      return(sum((x$data[[1]][,2]-y$data[[1]][,2])^2)/nrow(x$data[[1]]))
    } else {
      return (5000) # Enormous distance as it is not valid
    }
  }
  ldist  = ldply(lib,chid,x)
  idx    = which.min(ldist[,1])[1]
  res_50 = data.frame(T=lib[[idx]]$stellarp[1],logg=lib[[idx]]$stellarp[2],
                   met=lib[[idx]]$stellarp[3],name=lib[[idx]]$name,
                   dist=ldist[idx,1])
  return(res_50)
}
# Loading IPAC prediction from Dr Sarro  (objeto piac_temp)
load("~/git/M_prep_Noise/Teffs.RData")
load("~/git/M_prep_IPAC/Teffs_150722.RData")
ipac_temp[,7]=teff2  # CHANGE THE ESTIMATED T FROM THE INITIAL VALUES (req Prof LSB)
ipac_temp[,1]=as.character(ipac_temp[,1])
ipac_temp[,2]=as.character(ipac_temp[,2])
ipac_temp[,3]=as.character(ipac_temp[,3])
ipac_temp[,4]=as.character(ipac_temp[,4])
ipac_temp[,5]=as.character(ipac_temp[,5])
ipac_temp[,6]=as.character(ipac_temp[,6])
ipac_temp[ipac_temp=='\xa0']=""
#
lnm<-unlist(lapply(bf_clean,function(x){return(x$name)}))
buscar=function(x,y,l=4){
  for ( i in x[1:l]) {
    if (nchar(i) > 1) {
      stg = gsub('+','p',gsub(' ','_',i),fixed=TRUE)
      stg = gsub('\\(','\\\\(',gsub('\\)','\\\\)',stg))
      if (nchar(stg) > 0) {
        pos=grep(stg,y)
        if ( length(pos) == 1 ) {
          return (pos)
        }
      }
    }
  }
  return(-1)
}
#
idx=apply(ipac_temp[,-c(5,7)],1,buscar,lnm,6)
Teff_scs = rep(NA,max(idx))
Tipo_scs = rep(NA,max(idx))
idpos=data.frame(LSB=1:length(idx),BPG=idx)
for ( i in 1:nrow(idpos)) {
  if (idpos[i,2]>0) {
    Teff_scs[idpos[i,2]]= ipac_temp[idpos[i,1],7]
    Tipo_scs[idpos[i,2]]= ipac_temp[idpos[i,1],5]
  }
}
# 
# Chi2 min distance
chi2d_oo=ldply(bf_clean,minchid,bp_clean)
chi2d_50=ldply(bf_clean,minchid,bp_50)
chi2d_10=ldply(bf_clean,minchid,bp_10)
ref=data.frame(Name=lnm,Chi2_T_10=chi2d_10[,2],Chi2_T_50=chi2d_50[,2],Chi2_T_oo=chi2d_oo[,2],
               ICA_T_10=G_coef2,ICA_T_50=G_coef,ICA_T_oo=G_coef0)

Modelado de T con esas Features

#
clase_luminosidad = function(x) {
  # we look over Spectral SubClass
  # for roman numbers V=>dwarft; III => giants I => Supergiants (II => I) 
  cl=c("V","III","I") 
  i=1
  res=NA
  if ( ! is.na(x) ) {
    while(i <= length(cl) & is.na(res)) {
      j=regexpr(cl[i],x)
      if (j[1] > 0) {
        res=cl[i]
      } else {
        i=i+1
      }
    }
  }
  return(res)
}
clase_m = function(x) {
  # we look over Spectral SubClass
  # for roman numbers V=>dwarft; III => giants I => Supergiants (II => I) 
#   cl=c("M0.5","M0","M1.5","M1","M2.5","M2","M3.5","M3","M4.5","M4","M5.5","M5","M6.5","M6",
#        "M7.5","M7","M8.5","M8","M9.5","M9") 
  cl=c("M0","M1","M2","M3","M4","M5","M6","M7","M8","M9") 
  i=1
  res=NA
  if ( ! is.na(x) ) {
    while(i <= length(cl) & is.na(res)) {
      j=regexpr(cl[i],x)
      if (j[1] > 0) {
        res=cl[i]
      } else {
        i=i+1
      }
    }
  }
  return(res)
}
#
#
prep_datos=function(res){
  X=matrix(NA,nrow=length(res[[1]]$x),ncol=length(res))
  for (j in 1:length(res)) {
    X[,j]=res[[j]]$x/res[[j]]$x0
  }
  colnames(X)=paste("C",1:length(res),sep="")   
  return(X)
}
#
modelado=function(X,Y) {
  #
  trn=1:nrow(X)
  folds=5
  repeats=1
  #
  mseeds <- vector(mode = "list", length = (folds+1))
  for(i in 1:folds) mseeds[[i]] <- sample.int(nrow(X), 100)
      mseeds[[(folds+1)]] <- sample.int(1000, 1)
  myControl = trainControl(method='cv', number=folds, 
                  repeats=repeats, returnResamp='none', 
                  returnData=FALSE, savePredictions=TRUE, 
                  verboseIter=FALSE, allowParallel=TRUE,seeds=mseeds)
  #Train some models
  model_1.1 = "train(X[trn,], Y[trn], method='gbm', 
                     trControl=myControl,
                tuneGrid=expand.grid(n.trees=seq(200,500,100), n.minobsinnode=c(2,5),
                                     interaction.depth=seq(3,15,2), 
                                     shrinkage = seq(0.01,0.1,0.02)),verbose=FALSE)"
  model_1.2 = "train(X[trn,], Y[trn], method='blackboost', 
                  trControl=myControl, tuneGrid=expand.grid(.mstop=10^(2:4), 
                                     .maxdepth=seq(5,15,3)))"
  model_1.3 = "train(X[trn,], Y[trn], method='rf', 
                     trControl=myControl,
                     tuneGrid=expand.grid(.mtry=(2:ncol(X))),
                     proximity=TRUE)"
  model_1.4 = "train(X[trn,], Y[trn], method='knn', 
                     trControl=myControl, trace=FALSE,
                     tuneGrid=expand.grid(k=(2:min(9,ncol(X)))))"
  model_1.5 = "train(X[trn,], Y[trn], method='ppr', 
                     trControl=myControl,tuneGrid=expand.grid(.nterms=10))"
  model_1.6 = "train(X[trn,], Y[trn], method='earth', 
                     trControl=myControl,tuneGrid=expand.grid(.degree = 3,
                          .nprune = (1:10) * 2), metric = 'RMSE',
                          maximize = FALSE)"
  model_1.7 = "train(X[trn,], Y[trn], method='glm', 
                     trControl=myControl)"
  model_1.8 = "train(X[trn,], Y[trn], method='svmRadial', 
                     trControl=myControl,tuneGrid=expand.grid(.C=10^(-3:3), 
                      .sigma=c(10^(-4:3))))"
  model_1.9 = "train(X[trn,], Y[trn], method='cubist', 
                     trControl=myControl,commiittees=10)"
  model_1.10 = "train(X[trn,], Y[trn], method='kernelpls', 
                     trControl=myControl,tuneGrid=expand.grid(.ncomp=seq(2,ncol(X))))"
  model_1.11 = "train(X[trn,], Y[trn], method='nnet', 
                  trControl=myControl,tuneGrid=expand.grid(.size=seq(2,round(2*ncol(X)),3), 
                      .decay=c(1.e-5,1.e-2)),
                      linout=TRUE, rang = 300, trace=FALSE,
                      maxit=10000, reltol=1.0e-11, abstol=1.0e-6)"
  model_1.12 = "train(X[trn,], Y[trn], method='bagEarth', 
                  trControl=myControl,tuneGrid=expand.grid(.nprune=(1:10)*3,.degree=1:5))"
  model_1.13 = "train(X[trn,], Y[trn], method='cubist', trControl=myControl,
                  tuneGrid=expand.grid(.committees=3:50, .neighbors=1:7))"
  # 
  #Make a list of all the models
  lmodels=c("model_1.1", "model_1.2", "model_1.3", "model_1.4", 
            "model_1.5", "model_1.6", "model_1.7", "model_1.8", 
            "model_1.9", "model_1.10","model_1.11","model_1.12", 
            "model_1.13") 
#  
  all.models_5 =list()
  for (i in lmodels) {
    all.models_5[[length(all.models_5)+1]] = eval(parse(text=gsub('\n','',get(i))))
  }
  names(all.models_5) = sapply(all.models_5, function(x) x$method)
  # 
  ensam_5 <- caretList(X[trn,],Y[trn],methodList=c('svmRadial',
                        'gbm','blackboost','rf','earth','bagEarth'))
  ens <- caretEnsemble(ensam_5)
  #Make a linear regression ensemble
  if (exists("ens")){
    all.models_5[[length(all.models_5)+1]] = get("ens")
    names(all.models_5)[length(all.models_5)]="ENS"
  } 
  return(all.models_5)
}
#
# Function that returns Root Mean Squared Error
rmse <- function(error) {
    sqrt(mean(error^2,na.rm=TRUE))
}
# Function that returns Mean Absolute Error
mae <- function(error) {
    mean(abs(error),na.rm=TRUE)
}
#
rmdse <- function(error) {
    sqrt(median(error^2,na.rm=TRUE))
}
# Function that returns Mean Absolute Error
made <- function(error) {
    median(abs(error),na.rm=TRUE)
}
#
#
if ( file.exists("~/git/M_prep_IPAC/GA_IPACrv_MT_TF2-interp2_Models.RData")) {
  load("~/git/M_prep_IPAC/GA_IPACrv_MT_TF2-interp2_Models.RData")
} else {
  y=YPT[,1]
  #res00=SelFeatures(GAs[[isol]],cnjts,bandas)
  #res10=SelFeatures(GAs10[[isol10]],cnjts,bandas10)
  #res50=SelFeatures(GAs50[[isol50]],cnjts,bandas50) 
  #
  # Cargamos la lista de features que queremos probar.
  # Se supone que de una generación que no correponde con la proporcionada por 
  # la generación existente de genéticos GA_2013_?_0x_??_f2_data.RData
  #
  org = function(lst) {
    lsp = strsplit(gsub("[\t, ]","",lst),"&")
    c1  = paste(lsp[[1]][1],"-",lsp[[1]][2],sep="")
    c2  = paste(lsp[[1]][3],"-",lsp[[1]][4],sep="")  
    return(c(c1,c2))
  }
  lfea00=c(
  "7062 & 7094.4 &  7314 & 7346.4",
  "7116 & 7148.4 &  7782 & 7814.4",
  "7134 & 7166.4 &  7872 & 7904.4",
  "6900 & 6932.4 &  7764 & 7796.4",
  "7170 & 7202.4 &  7890 & 7922.4",
  "7080 & 7112.4 &  7926 & 7958.4",
  "7188 & 7220.4 &  7548 & 7580.4",
  "7800 & 7832.4 &  7962 & 7994.4",
  "6990 & 7022.4 &  7008 & 7040.4",
  "7026 & 7058.4 &  6990 & 7022.4" )
  mfea00=t(apply(as.data.frame(lfea00),1,org))
  #
  lfea10=c(
  "7692 & 7724.4 &  6936 & 6968.4", 
  "6990 & 7022.4 &  7998 & 8030.4",
  "6900 & 6932.4 &  7548 & 7580.4",
  "7854 & 7886.4 &  7710 & 7742.4",
  "7116 & 7148.4 &  7908 & 7940.4",
  "7278 & 7310.4 &  7926 & 7958.4",
  "7152 & 7184.4 &  7746 & 7778.4",
  "7134 & 7166.4 &  7764 & 7796.4",
  "6918 & 6950.4 &  6900 & 6932.4",
  "7224 & 7256.4 &  7962 & 7994.4")
  mfea10=t(apply(as.data.frame(lfea10),1,org))
  #
  lfea50=c(
    "7062 & 7094.4 & 7296 & 7328.4",
    "7026 & 7058.4 & 7044 & 7076.4",
    "7080 & 7112.4 & 7926 & 7958.4",
    "6900 & 6932.4 & 7548 & 7580.4",
    "7134 & 7166.4 & 7836 & 7868.4",
    "7296 & 7328.4 & 7962 & 7994.4",
    "6936 & 6968.4 & 7728 & 7760.4",
    "6972 & 7004.4 & 6900 & 6932.4",
    "6990 & 7022.4 & 7944 & 7976.4",
    "6918 & 6950.4 & 7782 & 7814.4")
  mfea50=t(apply(as.data.frame(lfea50),1,org))
  #
  y=YPT[,1]
  res00=SelFeaturesFixed(mfea00,cnjts,bandas)
  res10=SelFeaturesFixed(mfea10,cnjts,bandas10)
  res50=SelFeaturesFixed(mfea50,cnjts,bandas50)  
  #
  #
  X00 = prep_datos(res00)
  md5 = modelado(X00,as.numeric(YPT[,1]))
  X10 = prep_datos(res10)
  md51= modelado(X10,as.numeric(YPT[,1]))
  X50 = prep_datos(res50)
  md55= modelado(X50,as.numeric(YPT[,1]))
  #
  # Consideramos ahora los espectros IPAC corregidos por doppler (A Bello 16/7/2015)
  load("../M_redshift/M_prep_clean_IPAC_corrected.RData")
  bfy=do.call(rbind,lapply(bq_clean,function(x){return(x$data[[1]][,2])}))
  colnames(bfy)=vf
  for (i in seq(1,siz,5)) { # LSB asked for steps of 5 pixels
    idx=paste("s=",i,sep="")
    lvf=vf
    if ( i > 1) {
      lvf=vf[-c(1:(i-1))]
    }
    ff=as.factor(sort(rep(1:ceiling(length(lvf)/siz),siz))[1:length(lvf)])
    st=split(lvf,ff)
    for (j in 1:length(st)) {
      if (length(st[[j]]) < siz)
        st[[j]] = NULL
    }
    lst = length(st)
    for (j in 1:lst) {
      bfndas[[idx]]$mat[,j]=apply(bfy[,st[[j]]],1,area,st[[j]])     
    }
  }   
  # Continuamos ahrora
  xf0 = prep_datos(SelFeaturesFixed(mfea00,cnjts,bfndas))
  xf1 = prep_datos(SelFeaturesFixed(mfea10,cnjts,bfndas))
  xf5 = prep_datos(SelFeaturesFixed(mfea50,cnjts,bfndas))
  #
  YTn00=predict(md5[[which(names(md5)=="rf")]],xf0)
  YTn01=predict(md51[[which(names(md51)=="rf")]],xf0)
  YTn05=predict(md55[[which(names(md55)=="rf")]],xf0)
  YTn10=predict(md5[[which(names(md5)=="rf")]],xf1)
  YTn11=predict(md51[[which(names(md51)=="rf")]],xf1)
  YTn15=predict(md55[[which(names(md55)=="rf")]],xf1)
  YTn50=predict(md5[[which(names(md5)=="rf")]],xf5)
  YTn51=predict(md51[[which(names(md51)=="rf")]],xf5)
  YTn55=predict(md55[[which(names(md55)=="rf")]],xf5)
  #
  Clase_lum=apply(as.data.frame(as.character(Tipo_scs),
            stringsAsFactors=FALSE),1,clase_luminosidad)
  Clase_m  =apply(as.data.frame(as.character(Tipo_scs),
            stringsAsFactors=FALSE),1,clase_m)
  SpT=Clase_m
  LC =Clase_lum
  ref_tot0=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,
                ICA_10 = ref$ICA_T_10,ICA_50 = ref$ICA_T_50, ICA_oo=ref$ICA_T_oo,
                YTn00,YTn01,YTn05,YTn10,YTn11,YTn15,YTn50,
                YTn51,YTn55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
  #
  save(bpy,bfy,YPT,YPG,YPM,vf,siz,bandas,bfndas, bandas10,
       bandas50,cnjts, NG,NBLK,NBITS,MAXV,md5,md51,
       md55,res00,res10,res50, X00,X10,X50,YTn00,YTn01,
       YTn05,YTn10,YTn11,YTn15,YTn50,YTn51,YTn55,xf0,xf1,xf5,
       ref_tot0,LC,SpT,
       file="~/git/M_prep_IPAC/GA_IPACrv_MT_TF2-interp2_Models.RData")
}
#
YTpknn00=predict(md5[[which(names(md5)=="knn")]],xf0)
YTpknn11=predict(md51[[which(names(md51)=="knn")]],xf1)
YTpknn55=predict(md55[[which(names(md55)=="knn")]],xf5)
save(YTpknn00,YTpknn11,YTpknn55,xf0,xf1,xf5,
     file="~/git/M_prep_IPAC/GA_predict_Trv_11F2_newT.RData")
#
y=YPT[,1]
ref_tot0=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,
                ICA_10 = ref$ICA_T_10,ICA_50 = ref$ICA_T_50, ICA_oo=ref$ICA_T_oo,                
                YTn00,YTn01,YTn05,YTn10,YTn11,YTn15,YTn50,
                YTn51,YTn55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
#
ref_tot2=ref_tot0
#
print(xtable(ldply(res00,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7062-7094.4 7314-7346.4
2 7116-7148.4 7782-7814.4
3 7134-7166.4 7872-7904.4
4 6900-6932.4 7764-7796.4
5 7170-7202.4 7890-7922.4
6 7080-7112.4 7926-7958.4
7 7188-7220.4 7548-7580.4
8 7800-7832.4 7962-7994.4
9 6990-7022.4 7008-7040.4
10 7026-7058.4 6990-7022.4
print(xtable(ldply(res10,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7692-7724.4 6936-6968.4
2 6990-7022.4 7998-8030.4
3 6900-6932.4 7548-7580.4
4 7854-7886.4 7710-7742.4
5 7116-7148.4 7908-7940.4
6 7278-7310.4 7926-7958.4
7 7152-7184.4 7746-7778.4
8 7134-7166.4 7764-7796.4
9 6918-6950.4 6900-6932.4
10 7224-7256.4 7962-7994.4
print(xtable(ldply(res50,function(x){return(c(x$name,x$name0))})),type="html")
V1 V2
1 7062-7094.4 7296-7328.4
2 7026-7058.4 7044-7076.4
3 7080-7112.4 7926-7958.4
4 6900-6932.4 7548-7580.4
5 7134-7166.4 7836-7868.4
6 7296-7328.4 7962-7994.4
7 6936-6968.4 7728-7760.4
8 6972-7004.4 6900-6932.4
9 6990-7022.4 7944-7976.4
10 6918-6950.4 7782-7814.4
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=chi2d_10,shape=LC),size=3) +
         xlab("Theoretical T [K]") + ylab("Chi2 10 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=chi2d_50,shape=LC),size=3) +
         xlab("Theoretical T [K]") + ylab("Chi2 50 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn00,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Snr=oo [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn11,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Msnr=10 Fsnr=10 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))
#
ggplot(data=ref_tot2) + 
         geom_point(aes(x=Teff_LSB,y=YTn55,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab("ML predicted Msnr=50 Fsnr=50 [K]") +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="gray") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2))
#
lmod=c("rf","gbm","svmRadial","nnet","knn","bagEarth","kernelpls","cubist")
nmod=c("RF","GB","SVR","NNR","KNN","MARS","PLS","Rule-Regression")
dataT = array(0,c(3,length(nmod),nrow(xf0))) # Dim 1 SNR, dim2 Star and Dim3 Model
nomT = unlist(lapply(bf_clean,function(x){nm=gsub('.fits','',x$name);pp=strsplit(nm,'_');   
                  return(pp[[1]][2])}))
for(ll in c(1:2)) {
  if (ll == 2) {
    pdf(file="~/git/M_prep_IPAC/GA_model_Trv-interp2_newT.pdf",width=12,heigh=10)
  }
  for (i in 1:length(lmod)) {
    YTm00=predict(md5[[which(names(md5)==lmod[i])[1]]],xf0)
    YTm11=predict(md51[[which(names(md51)==lmod[i])[1]]],xf1)
    YTm55=predict(md55[[which(names(md55)==lmod[i])[1]]],xf5)
    dataT[1,i,] = YTm00
    dataT[2,i,] = YTm11
    dataT[3,i,] = YTm55       
    #
    ref_tot0m=data.frame(Name=as.character(ref$Name),
                chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,chi2d_oo=ref$Chi2_T_oo,
                ICA_10 = ref$ICA_T_10,ICA_50 = ref$ICA_T_50, ICA_oo=ref$ICA_T_oo,                
                YTm00,YTm11,YTm55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
    ref_tot2m=ref_tot0m 
    diffs=apply(ref_tot2m[,! colnames(ref_tot2m) %in% c("Name","SpT","Teff_LSB","LC")],
              2,FUN="-",ref_tot2m[,"Teff_LSB"])
    rownames(diffs)=ref_tot2m[,"Name"]
    #
    cat(paste("T Modelling with ",lmod[i],". Error analysis follows.",sep=""))
errors=data.frame(drmse = apply(diffs,2,rmse),dmae=apply(diffs,2,mae),
                  drmdse=apply(diffs,2,rmdse),dmade=apply(diffs,2,made))
    print(xtable(errors),type="html")
  #
    cat(paste("T Modelling with",nmod[i],". SNR=oo",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm00,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=oo [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
    #
    cat(paste("T Modelling with",nmod[i],". SNR=10",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm11,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=10 [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
    #
    cat(paste("T Modelling with",nmod[i],". SNR=50",sep=""))
    print(ggplot(data=ref_tot2m) + 
           geom_point(aes(x=Teff_LSB,y=YTm55,shape=LC),size=3) +
           xlab("Theoretical T [K]") + 
           ylab(paste(nmod[i]," predicted SNR=50 [K]","")) +
           theme_bw() + #  scale_colour_brewer(palette="Set1") +
           geom_abline(position="identity", colour="red") +
           xlim(2000,4200) + ylim(2000,4200)   +
           guides(col=guide_legend(ncol=2)))
  }
}
GA_r3 Loading required package: randomForest
GA_r3 randomForest 4.6-12
GA_r3 Type rfNews() to see new features/changes/bug fixes.
T Modelling with rf. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 145.18 113.42 94.12 94.12
YTm11 160.04 121.10 97.20 97.19
YTm55 195.72 137.85 103.00 103.00

T Modelling withRF. SNR=oo T Modelling withRF. SNR=10 T Modelling withRF. SNR=50

GA_r3 Loading required package: gbm
GA_r3 Loading required package: survival
GA_r3 
GA_r3 Attaching package: 'survival'
GA_r3 
GA_r3 The following object is masked _by_ '.GlobalEnv':
GA_r3 
GA_r3     colon
GA_r3 
GA_r3 The following object is masked from 'package:caret':
GA_r3 
GA_r3     cluster
GA_r3 
GA_r3 Loading required package: splines
GA_r3 Loaded gbm 2.1.1
T Modelling with gbm. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 184.56 130.09 94.02 94.02
YTm11 175.35 130.35 104.55 104.55
YTm55 225.43 148.33 99.44 99.44
T Modelling withGB. SNR=oo T Modelling withGB. SNR=10 T Modelling withGB. SNR=50 T Modelling with svmRadial. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 367.65 242.91 153.64 153.63
YTm11 203.11 143.48 112.06 112.06
YTm55 284.93 181.67 106.29 106.29
T Modelling withSVR. SNR=oo T Modelling withSVR. SNR=10 T Modelling withSVR. SNR=50 T Modelling with nnet. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 394.81 280.14 202.17 202.17
YTm11 220.97 133.78 83.91 83.91
YTm55 313.43 194.54 111.41 111.41
T Modelling withNNR. SNR=oo T Modelling withNNR. SNR=10 T Modelling withNNR. SNR=50 T Modelling with knn. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 223.81 156.17 109.66 109.66
YTm11 183.20 139.63 118.86 118.76
YTm55 192.93 142.26 109.04 109.04

T Modelling withKNN. SNR=oo T Modelling withKNN. SNR=10 T Modelling withKNN. SNR=50

GA_r3 Loading required package: earth
GA_r3 Loading required package: plotmo
GA_r3 Loading required package: plotrix
GA_r3 Loading required package: TeachingDemos
T Modelling with bagEarth. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 373.72 244.34 156.74 156.73
YTm11 222.45 124.09 76.11 76.11
YTm55 360.74 196.89 102.74 102.74
T Modelling withMARS. SNR=oo T Modelling withMARS. SNR=10 T Modelling withMARS. SNR=50 T Modelling with kernelpls. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 408.55 278.35 207.89 207.89
YTm11 227.00 125.72 72.27 72.27
YTm55 331.27 206.84 122.78 122.78
T Modelling withPLS. SNR=oo T Modelling withPLS. SNR=10 T Modelling withPLS. SNR=50 T Modelling with cubist. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 378.43 292.12 238.49 238.49
YTm11 188.46 132.78 101.72 101.72
YTm55 257.15 160.42 94.45 94.45
T Modelling withRule-Regression. SNR=oo T Modelling withRule-Regression. SNR=10 T Modelling withRule-Regression. SNR=50T Modelling with rf. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 145.18 113.42 94.12 94.12
YTm11 160.04 121.10 97.20 97.19
YTm55 195.72 137.85 103.00 103.00
T Modelling withRF. SNR=ooT Modelling withRF. SNR=10T Modelling withRF. SNR=50T Modelling with gbm. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 184.56 130.09 94.02 94.02
YTm11 175.35 130.35 104.55 104.55
YTm55 225.43 148.33 99.44 99.44
T Modelling withGB. SNR=ooT Modelling withGB. SNR=10T Modelling withGB. SNR=50T Modelling with svmRadial. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 367.65 242.91 153.64 153.63
YTm11 203.11 143.48 112.06 112.06
YTm55 284.93 181.67 106.29 106.29
T Modelling withSVR. SNR=ooT Modelling withSVR. SNR=10T Modelling withSVR. SNR=50T Modelling with nnet. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 394.81 280.14 202.17 202.17
YTm11 220.97 133.78 83.91 83.91
YTm55 313.43 194.54 111.41 111.41
T Modelling withNNR. SNR=ooT Modelling withNNR. SNR=10T Modelling withNNR. SNR=50T Modelling with knn. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 223.81 156.17 109.66 109.66
YTm11 183.20 139.63 118.86 118.76
YTm55 192.93 142.26 109.04 109.04
T Modelling withKNN. SNR=ooT Modelling withKNN. SNR=10T Modelling withKNN. SNR=50T Modelling with bagEarth. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 373.72 244.34 156.74 156.73
YTm11 222.45 124.09 76.11 76.11
YTm55 360.74 196.89 102.74 102.74
T Modelling withMARS. SNR=ooT Modelling withMARS. SNR=10T Modelling withMARS. SNR=50T Modelling with kernelpls. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 408.55 278.35 207.89 207.89
YTm11 227.00 125.72 72.27 72.27
YTm55 331.27 206.84 122.78 122.78
T Modelling withPLS. SNR=ooT Modelling withPLS. SNR=10T Modelling withPLS. SNR=50T Modelling with cubist. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 378.43 292.12 238.49 238.49
YTm11 188.46 132.78 101.72 101.72
YTm55 257.15 160.42 94.45 94.45

T Modelling withRule-Regression. SNR=ooT Modelling withRule-Regression. SNR=10T Modelling withRule-Regression. SNR=50

dev.off()

png 2

save(nomT,LC,SpT,dataT,file="Trv_GA_models_IPAC-interp2_newT.RData")
#

Comparation about Cesseti features

En lugar de usar Genéticos para encontrar las mejores features, ahora aplicaremos las features de Cesseti et al.

#
fea_x =t(matrix(c(8461,8474,8484,8513,8522,8562,8577,8619,8642,8682,8730,8772,
                  8802,8811,8850,8890,9000,9030,9080,9100),ncol=10))
fea_x0=t(matrix(c(8474,8484,8474,8484,8474,8484,8563,8577,8619,8642,8700,8725,
                  8776,8792,8815,8850,8983,8998,9040,9050),ncol=10))
fea_ix=fea_ix0=fea_x
for (i in (1:nrow(fea_x))) {
  for (j in (1:ncol(fea_x))) {
    fea_ix[i,j] =which.min(abs(as.numeric(vf)-fea_x[i,j]))
    fea_ix0[i,j]=which.min(abs(as.numeric(vf)-fea_x0[i,j]))    
  }
}
#
res00=res10=res50=list()
for (j in 1:nrow(fea_ix)) {
  x= apply(bpy[,((fea_ix[j,1]):(fea_ix[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix[j,],collapse=":")))])
  x0=apply(bpy[,((fea_ix0[j,1]):(fea_ix0[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix0[j,],collapse=":")))])
  name=paste(vf[fea_ix[j,]],collapse="-")
  name0=paste(vf[fea_ix0[j,]],collapse="-")
  res00[[j]]=list(x=x,x0=x0,name=name,name0=name0)
  x= apply(bpy10[,((fea_ix[j,1]):(fea_ix[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix[j,],collapse=":")))])
  x0=apply(bpy10[,((fea_ix0[j,1]):(fea_ix0[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix0[j,],collapse=":")))])
  res10[[j]]=list(x=x,x0=x0,name=name,name0=name0)
  x= apply(bpy50[,((fea_ix[j,1]):(fea_ix[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix[j,],collapse=":")))])
  x0=apply(bpy50[,((fea_ix0[j,1]):(fea_ix0[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix0[j,],collapse=":")))])
  res50[[j]]=list(x=x,x0=x0,name=name,name0=name0)
}
rm(x,x0,name,name0)
#
X00 = prep_datos(res00)
md50c = modelado(X00,as.numeric(YPT[,1]))
## Loading required package: party
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## 
## Attaching package: 'modeltools'
## 
## The following object is masked from 'package:kernlab':
## 
##     prior
## 
## The following object is masked from 'package:plyr':
## 
##     empty
## 
## Loading required package: strucchange
## Loading required package: sandwich
## 
## Attaching package: 'strucchange'
## 
## The following object is masked from 'package:stringr':
## 
##     boundary
## 
## Loading required package: mboost
## Loading required package: stabs
## 
## Attaching package: 'stabs'
## 
## The following object is masked from 'package:modeltools':
## 
##     parameters
## 
## This is mboost 2.5-0. See 'package?mboost' and 'news(package  = "mboost")'
## for a complete list of changes.
## 
## 
## Attaching package: 'mboost'
## 
## The following object is masked from 'package:ggplot2':
## 
##     %+%

Iter TrainDeviance ValidDeviance StepSize Improve 1 266636.6652 -nan 0.1000 48822.3173 2 227382.7631 -nan 0.1000 40599.9819 3 192812.3156 -nan 0.1000 33868.6449 4 165245.7054 -nan 0.1000 26505.1536 5 141505.2105 -nan 0.1000 23079.2634 6 122639.6905 -nan 0.1000 19638.5643 7 106429.5706 -nan 0.1000 15388.1168 8 93347.8620 -nan 0.1000 12463.6261 9 81818.3732 -nan 0.1000 10963.9506 10 72469.2281 -nan 0.1000 8789.1220 20 30548.5727 -nan 0.1000 2234.1097 40 15530.3702 -nan 0.1000 101.7234 60 11410.5210 -nan 0.1000 58.0038 80 8918.7435 -nan 0.1000 -32.0592 100 7332.4010 -nan 0.1000 13.7223 120 6233.1116 -nan 0.1000 -10.4959 140 5300.0092 -nan 0.1000 -32.2669 150 4918.2831 -nan 0.1000 23.6246

X10 = prep_datos(res10)
md51c= modelado(X10,as.numeric(YPT[,1]))

Iter TrainDeviance ValidDeviance StepSize Improve 1 277574.3283 -nan 0.1000 37321.5154 2 247351.4265 -nan 0.1000 28582.1356 3 220836.3564 -nan 0.1000 26176.4698 4 197939.5442 -nan 0.1000 21008.5420 5 178780.4137 -nan 0.1000 16038.4548 6 163510.9238 -nan 0.1000 15364.7196 7 149808.8717 -nan 0.1000 11628.4078 8 138807.4310 -nan 0.1000 9665.1916 9 128921.9252 -nan 0.1000 8920.8779 10 121069.2647 -nan 0.1000 6787.7046 20 83186.5492 -nan 0.1000 1140.0261 40 66362.0960 -nan 0.1000 -344.9204 50 62750.4072 -nan 0.1000 5.5254

X50 = prep_datos(res50)
md55c= modelado(X50,as.numeric(YPT[,1]))

Iter TrainDeviance ValidDeviance StepSize Improve 1 268782.0392 -nan 0.1000 42958.4216 2 229715.8580 -nan 0.1000 39180.0522 3 197891.7723 -nan 0.1000 31366.7192 4 170793.0716 -nan 0.1000 26063.2088 5 149475.2182 -nan 0.1000 21664.8045 6 132091.1946 -nan 0.1000 16774.7485 7 116927.9849 -nan 0.1000 14235.5400 8 104284.4288 -nan 0.1000 10246.4116 9 94402.9916 -nan 0.1000 9547.7163 10 85966.6426 -nan 0.1000 7711.2861 20 48184.9573 -nan 0.1000 1305.9999 40 33033.8165 -nan 0.1000 -171.5535 60 28329.3987 -nan 0.1000 114.7601 80 24740.0455 -nan 0.1000 27.9851 100 22401.8075 -nan 0.1000 60.3376 120 20333.1863 -nan 0.1000 -61.9443 140 18749.8603 -nan 0.1000 -116.9200 150 17991.7584 -nan 0.1000 -37.4124

#
rf00 = list()
for (j in 1:nrow(fea_ix)) {
  x= apply(bfy[,((fea_ix[j,1]):(fea_ix[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix[j,],collapse=":")))])
  x0=apply(bfy[,((fea_ix0[j,1]):(fea_ix0[j,2]))],1,area,vf[eval(parse(text=paste(fea_ix0[j,],collapse=":")))])
  name=paste(vf[fea_ix[j,]],collapse="-")
  name0=paste(vf[fea_ix0[j,]],collapse="-")
  rf00[[j]]=list(x=x,x0=x0,name=name,name0=name0)
}
#
XFF = prep_datos(rf00)
for (i in 1:length(lmod)) {
  YTm00=predict(md50c[[which(names(md50c)==lmod[i])[1]]],XFF)
  YTm11=predict(md51c[[which(names(md51c)==lmod[i])[1]]],XFF)
  YTm55=predict(md55c[[which(names(md55c)==lmod[i])[1]]],XFF)
  dataT[1,i,] = YTm00
  dataT[2,i,] = YTm11
  dataT[3,i,] = YTm55       
  #
  ref_tot0m=data.frame(Name=as.character(ref$Name),
              chi2d_10=ref$Chi2_T_10, chi2d_50=ref$Chi2_T_50,chi2d_oo=ref$Chi2_T_oo,
              ICA_10 = ref$ICA_T_10,ICA_50 = ref$ICA_T_50, ICA_oo=ref$ICA_T_oo,                
              YTm00,YTm11,YTm55,Teff_LSB=Teff_scs,SpT=SpT,LC=LC)
  ref_tot2m=ref_tot0m 
  diffs=apply(ref_tot2m[,! colnames(ref_tot2m) %in% c("Name","SpT","Teff_LSB","LC")],
            2,FUN="-",ref_tot2m[,"Teff_LSB"])
  rownames(diffs)=ref_tot2m[,"Name"]
  #
  cat(paste("T Modelling with ",lmod[i],". Error analysis follows.",sep=""))
errors=data.frame(drmse = apply(diffs,2,rmse),dmae=apply(diffs,2,mae),
                drmdse=apply(diffs,2,rmdse),dmade=apply(diffs,2,made))
  print(xtable(errors),type="html")
#
  cat(paste("T Modelling with",nmod[i],". SNR=oo",sep=""))
  print(ggplot(data=ref_tot2m) + 
         geom_point(aes(x=Teff_LSB,y=YTm00,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab(paste(nmod[i]," predicted SNR=oo [K]","")) +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="red") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2)))
  #
  cat(paste("T Modelling with",nmod[i],". SNR=10",sep=""))
  print(ggplot(data=ref_tot2m) + 
         geom_point(aes(x=Teff_LSB,y=YTm11,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab(paste(nmod[i]," predicted SNR=10 [K]","")) +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="red") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2)))
  #
  cat(paste("T Modelling with",nmod[i],". SNR=50",sep=""))
  print(ggplot(data=ref_tot2m) + 
         geom_point(aes(x=Teff_LSB,y=YTm55,shape=LC),size=3) +
         xlab("Theoretical T [K]") + 
         ylab(paste(nmod[i]," predicted SNR=50 [K]","")) +
         theme_bw() + #  scale_colour_brewer(palette="Set1") +
         geom_abline(position="identity", colour="red") +
         xlim(2000,4200) + ylim(2000,4200)   +
         guides(col=guide_legend(ncol=2)))
}
T Modelling with rf. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 305.72 228.43 171.58 171.58
YTm11 202.86 162.78 139.65 139.64
YTm55 243.13 174.66 120.82 120.82
T Modelling withRF. SNR=oo T Modelling withRF. SNR=10 T Modelling withRF. SNR=50 T Modelling with gbm. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 336.78 268.60 222.11 222.11
YTm11 187.70 148.29 120.04 120.04
YTm55 260.76 190.25 138.07 138.07
T Modelling withGB. SNR=oo T Modelling withGB. SNR=10 T Modelling withGB. SNR=50 T Modelling with svmRadial. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 840.30 709.50 688.47 688.47
YTm11 196.85 155.03 134.66 134.66
YTm55 379.36 266.94 193.56 193.56
T Modelling withSVR. SNR=oo T Modelling withSVR. SNR=10 T Modelling withSVR. SNR=50 T Modelling with nnet. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 719.28 576.76 489.00 488.97
YTm11 206.89 165.66 135.18 135.17
YTm55 513.71 393.15 295.86 295.86
T Modelling withNNR. SNR=oo T Modelling withNNR. SNR=10 T Modelling withNNR. SNR=50 T Modelling with knn. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 313.88 237.62 175.02 175.00
YTm11 235.29 191.53 158.22 158.22
YTm55 246.17 180.55 136.75 136.75
T Modelling withKNN. SNR=oo T Modelling withKNN. SNR=10 T Modelling withKNN. SNR=50 T Modelling with bagEarth. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 3464.16 1481.70 784.14 784.14
YTm11 252.03 159.15 123.70 123.70
YTm55 789.30 343.08 186.29 186.29
T Modelling withMARS. SNR=oo T Modelling withMARS. SNR=10 T Modelling withMARS. SNR=50 T Modelling with kernelpls. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 2246.74 1741.28 1424.20 1424.20
YTm11 250.14 210.91 200.68 200.68
YTm55 741.48 522.90 361.14 361.14
T Modelling withPLS. SNR=oo T Modelling withPLS. SNR=10 T Modelling withPLS. SNR=50 T Modelling with cubist. Error analysis follows.
drmse dmae drmdse dmade
chi2d_10 147.48 108.08 79.02 79.02
chi2d_50 121.40 79.89 55.78 55.78
chi2d_oo 126.03 84.56 57.26 57.26
ICA_10 188.50 149.48 125.89 125.89
ICA_50 164.24 122.07 94.71 94.71
ICA_oo 190.90 150.47 130.09 130.09
YTm00 828.00 760.42 774.26 774.26
YTm11 210.81 160.26 128.07 128.07
YTm55 400.04 305.00 238.60 238.59

T Modelling withRule-Regression. SNR=oo T Modelling withRule-Regression. SNR=10 T Modelling withRule-Regression. SNR=50