Hello Professor I am very sorry I have searched high and low for a new data set that doesn’t suck and continue to come up empty handed. I wanted to redo the data selection before I turned in my hypothesis.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
setwd("C:/Users/KaeRo/Desktop/R Studio/Reseach Data Selection")
library(readxl)
district <- read_excel("district.xls")
  1. summary(data$x)
summary(district$DPETHISP)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   21.00   37.90   43.29   61.90  100.00
  1. hist(data$x) - for continuous variables
hist(district$DPETASIP)

  1. plot(data\(x,data\)y) - to compare variables
plot(district$DPSTTOSA,district$DPSTWHFP)

  1. cor(data\(x,data\)y) - to see a correlation between two variables
Cor_district<-district %>% select(DPSTTOSA,DPSTWHFP) %>% drop_na()
cor(Cor_district$DPSTTOSA,Cor_district$DPSTWHFP)
## [1] -0.1932555