Elaboration likelihood model looks at how people process images and change their attitude on a subject. Considering this, dense and persuasive information on a website about legalizing marijuana could change an undecided individual’s attitude on supporting the legalization.
The odds that support for legalizing marijuana will increase based on minutes spent reading dense persuasive info on the web.
The dependent variable in the analysis is a categorical measure of those who are undecided about legalizing marijuana at a level of Oppose(0) and support (1). The independent variable in the analysis is a continuous measure of number of minutes spent out of 30, spent reading dense persuasive info on the web.
A logistic regression curve was used to test for statistical significance of an increase enduring stable attitude change.
The graph below compares the attitude change and endurance to time spent reading persuasive material. The tables show the results, linearity, and inflection point of the logistic regression curve.
Logistic Regression Results | ||||
Odds Ratios with 95% Confidence Intervals | ||||
term | Odds_Ratio | CI_Lower | CI_Upper | P_Value |
---|---|---|---|---|
(Intercept) | 0.099 | 0.044 | 0.205 | 0.0000 |
IV | 1.167 | 1.116 | 1.227 | 0.0000 |
Linearity of the Logit Test (Box-Tidwell) | |||
Interaction term indicates violation if significant | |||
term | Estimate | Std_Error | P_Value |
---|---|---|---|
(Intercept) | −2.566 | 1.100 | 0.0196 |
IV | 0.262 | 0.290 | 0.3657 |
IV_log | −0.032 | 0.078 | 0.6869 |
Inflection Point of Logistic Curve | |
Value of IV where predicted probability = 0.50 | |
Probability | Inflection_Point |
---|---|
0.5 | 14.965 |
The logistic regression curve showed an increase in attitude change and endurance in support of the legalization of marijuana when more time was spent reading the dense persuasive material.The odds ratio show 1.167 for the independent variable and indicate that the association is statistically significant. The p-value for the linearity of the logit test is above 0.5 showing no violations of the assumption. The inflection point of the logistic curve can be rounded to 15 minutes. These results supported the hypothesis.
# ------------------------------
# Install and load required packages
# ------------------------------
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("plotly")) install.packages("plotly")
library(ggplot2)
library(dplyr)
library(gt)
library(gtExtras)
library(plotly)
# ------------------------------
# Read the data
# ------------------------------
mydata <- read.csv("ELM.csv") # <-- EDIT filename
# ################################################
# # (Optional) Remove specific case(es)s by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line
# Specify dependent (DV) and independent (IV) variables
mydata$DV <- mydata$Favor_1 # <-- EDIT DV column
mydata$IV <- mydata$Minutes # <-- EDIT IV column
# Ensure DV is binary numeric (0/1)
mydata$DV <- as.numeric(as.character(mydata$DV))
# ------------------------------
# Logistic regression plot
# ------------------------------
logit_plot <- ggplot(mydata, aes(x = IV, y = DV)) +
geom_point(alpha = 0.5) + # scatterplot of observed data
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = FALSE,
color = "#1f78b4") +
labs(title = "Logistic Regression Curve",
x = "Independent Variable (IV)",
y = "Dependent Variable (DV)")
logit_plotly <- ggplotly(logit_plot)
# ------------------------------
# Run logistic regression
# ------------------------------
options(scipen = 999)
log.ed <- glm(DV ~ IV, data = mydata, family = "binomial")
# Extract coefficients and odds ratios
results <- broom::tidy(log.ed, conf.int = TRUE, exponentiate = TRUE) %>%
select(term, estimate, conf.low, conf.high, p.value) %>%
rename(Odds_Ratio = estimate,
CI_Lower = conf.low,
CI_Upper = conf.high,
P_Value = p.value)
# Display results as a nice gt table
results_table <- results %>%
gt() %>%
fmt_number(columns = c(Odds_Ratio, CI_Lower, CI_Upper), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Logistic Regression Results",
subtitle = "Odds Ratios with 95% Confidence Intervals"
)
# ------------------------------
# Check linearity of the logit (Box-Tidwell test)
# ------------------------------
# (Assumes IV > 0; shift IV if needed)
mydata$IV_log <- mydata$IV * log(mydata$IV)
linearity_test <- glm(DV ~ IV + IV_log, data = mydata, family = "binomial")
linearity_results <- broom::tidy(linearity_test) %>%
select(term, estimate, std.error, p.value) %>%
rename(Estimate = estimate,
Std_Error = std.error,
P_Value = p.value)
linearity_table <- linearity_results %>%
gt() %>%
fmt_number(columns = c(Estimate, Std_Error), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Linearity of the Logit Test (Box-Tidwell)",
subtitle = "Interaction term indicates violation if significant"
)
# ------------------------------
# Calculate the inflection point (p = .50)
# ------------------------------
p <- 0.50
Inflection_point <- (log(p/(1-p)) - coef(log.ed)[1]) / coef(log.ed)[2]
inflection_table <- tibble(
Probability = 0.5,
Inflection_Point = Inflection_point
) %>%
gt() %>%
fmt_number(columns = Inflection_Point, decimals = 3) %>%
tab_header(
title = "Inflection Point of Logistic Curve",
subtitle = "Value of IV where predicted probability = 0.50"
)
# ------------------------------
# Outputs
# ------------------------------
# Interactive plot
logit_plotly
# Tables
results_table
linearity_table
inflection_table