Rationale

Elaboration likelihood model looks at how people process images and change their attitude on a subject. Considering this, dense and persuasive information on a website about legalizing marijuana could change an undecided individual’s attitude on supporting the legalization.

Hypothesis

The odds that support for legalizing marijuana will increase based on minutes spent reading dense persuasive info on the web.

Variables & Method

The dependent variable in the analysis is a categorical measure of those who are undecided about legalizing marijuana at a level of Oppose(0) and support (1). The independent variable in the analysis is a continuous measure of number of minutes spent out of 30, spent reading dense persuasive info on the web.

A logistic regression curve was used to test for statistical significance of an increase enduring stable attitude change.

Results & Discussion

The graph below compares the attitude change and endurance to time spent reading persuasive material. The tables show the results, linearity, and inflection point of the logistic regression curve.

Logistic Regression Results
Odds Ratios with 95% Confidence Intervals
term Odds_Ratio CI_Lower CI_Upper P_Value
(Intercept) 0.099 0.044 0.205 0.0000
IV 1.167 1.116 1.227 0.0000
Linearity of the Logit Test (Box-Tidwell)
Interaction term indicates violation if significant
term Estimate Std_Error P_Value
(Intercept) −2.566 1.100 0.0196
IV 0.262 0.290 0.3657
IV_log −0.032 0.078 0.6869
Inflection Point of Logistic Curve
Value of IV where predicted probability = 0.50
Probability Inflection_Point
0.5 14.965

The logistic regression curve showed an increase in attitude change and endurance in support of the legalization of marijuana when more time was spent reading the dense persuasive material.The odds ratio show 1.167 for the independent variable and indicate that the association is statistically significant. The p-value for the linearity of the logit test is above 0.5 showing no violations of the assumption. The inflection point of the logistic curve can be rounded to 15 minutes. These results supported the hypothesis.

Code

# ------------------------------
# Install and load required packages
# ------------------------------
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("plotly")) install.packages("plotly")

library(ggplot2)
library(dplyr)
library(gt)
library(gtExtras)
library(plotly)


# ------------------------------
# Read the data
# ------------------------------
mydata <- read.csv("ELM.csv") # <-- EDIT filename

# ################################################
# # (Optional) Remove specific case(es)s by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line

# Specify dependent (DV) and independent (IV) variables
mydata$DV <- mydata$Favor_1   # <-- EDIT DV column
mydata$IV <- mydata$Minutes   # <-- EDIT IV column

# Ensure DV is binary numeric (0/1)
mydata$DV <- as.numeric(as.character(mydata$DV))


# ------------------------------
# Logistic regression plot 
# ------------------------------
logit_plot <- ggplot(mydata, aes(x = IV, y = DV)) +
  geom_point(alpha = 0.5) +   # scatterplot of observed data
  geom_smooth(method = "glm",
              method.args = list(family = "binomial"),
              se = FALSE,
              color = "#1f78b4") +
  labs(title = "Logistic Regression Curve",
       x = "Independent Variable (IV)",
       y = "Dependent Variable (DV)")

logit_plotly <- ggplotly(logit_plot)


# ------------------------------
# Run logistic regression
# ------------------------------
options(scipen = 999)
log.ed <- glm(DV ~ IV, data = mydata, family = "binomial")

# Extract coefficients and odds ratios
results <- broom::tidy(log.ed, conf.int = TRUE, exponentiate = TRUE) %>%
  select(term, estimate, conf.low, conf.high, p.value) %>%
  rename(Odds_Ratio = estimate,
         CI_Lower = conf.low,
         CI_Upper = conf.high,
         P_Value = p.value)

# Display results as a nice gt table
results_table <- results %>%
  gt() %>%
  fmt_number(columns = c(Odds_Ratio, CI_Lower, CI_Upper), decimals = 3) %>%
  fmt_number(columns = P_Value, decimals = 4) %>%
  tab_header(
    title = "Logistic Regression Results",
    subtitle = "Odds Ratios with 95% Confidence Intervals"
  )


# ------------------------------
# Check linearity of the logit (Box-Tidwell test)
# ------------------------------
# (Assumes IV > 0; shift IV if needed)
mydata$IV_log <- mydata$IV * log(mydata$IV)
linearity_test <- glm(DV ~ IV + IV_log, data = mydata, family = "binomial")

linearity_results <- broom::tidy(linearity_test) %>%
  select(term, estimate, std.error, p.value) %>%
  rename(Estimate = estimate,
         Std_Error = std.error,
         P_Value = p.value)

linearity_table <- linearity_results %>%
  gt() %>%
  fmt_number(columns = c(Estimate, Std_Error), decimals = 3) %>%
  fmt_number(columns = P_Value, decimals = 4) %>%
  tab_header(
    title = "Linearity of the Logit Test (Box-Tidwell)",
    subtitle = "Interaction term indicates violation if significant"
  )


# ------------------------------
# Calculate the inflection point (p = .50)
# ------------------------------
p <- 0.50
Inflection_point <- (log(p/(1-p)) - coef(log.ed)[1]) / coef(log.ed)[2]

inflection_table <- tibble(
  Probability = 0.5,
  Inflection_Point = Inflection_point
) %>%
  gt() %>%
  fmt_number(columns = Inflection_Point, decimals = 3) %>%
  tab_header(
    title = "Inflection Point of Logistic Curve",
    subtitle = "Value of IV where predicted probability = 0.50"
  )


# ------------------------------
# Outputs
# ------------------------------
# Interactive plot
logit_plotly

# Tables
results_table
linearity_table
inflection_table