The study investigates whether information-dense content on the Marijuana Policy Project website can persuade visitors to support marijuana legalization. According to the Elaboration Likelihood Model (ELM), content that encourages central-route processing—by providing detailed facts, statistics, and counterarguments—should lead to enduring attitude change, particularly among individuals who are motivated and able to process the information. By focusing on visitors who were initially undecided, the study tests whether engagement with dense content (measured as time spent reading) predicts shifts toward support for legalization over a six-month period.
Among individuals who are initially undecided about marijuana legalization, the amount of time spent reading information-dense persuasive content on the Marijuana Policy Project organization’s website will be positively associated with the likelihood of supporting legalization six months later.
The Independent Variable is time, in minutes out of 30, spent reading information-dense persuasive content on the website. The DV is support for legalizing marijuana six months after exposure. (binary:0 = oppose, 1 = support). I used logistic regression to examine the amount of time spent reading content on the MPP page predicts the likelihood of supporting legalization.
The logistic regression showed a positive relationship between minutes spent reading the MPP webpage and support for marijuana legalization at six months. The effect of minutes was statistically significant (p < .05). The Box–Tidwell test included the IV_log term (estimate = 0.6869), which was not significant, indicating that the assumption of linearity in the logit was met. The inflection point analysis showed that at 14.965 minutes spent on the site, the predicted probability of support reached 0.50. These results support the hypothesis that more time spent engaging with dense, persuasive information increases the likelihood of supporting legalization over time. The non-significant IV_log term (.6869) confirmed that the logistic model was appropriate. The inflection point suggests a practical threshold: once participants engaged with the material for about 15 minutes, they became more likely to support legalization than to oppose it.
Logistic Regression Results | ||||
Odds Ratios with 95% Confidence Intervals | ||||
term | Odds_Ratio | CI_Lower | CI_Upper | P_Value |
---|---|---|---|---|
(Intercept) | 0.099 | 0.044 | 0.205 | 0.0000 |
IV | 1.167 | 1.116 | 1.227 | 0.0000 |
Linearity of the Logit Test (Box-Tidwell) | |||
Interaction term indicates violation if significant | |||
term | Estimate | Std_Error | P_Value |
---|---|---|---|
(Intercept) | −2.566 | 1.100 | 0.0196 |
IV | 0.262 | 0.290 | 0.3657 |
IV_log | −0.032 | 0.078 | 0.6869 |
Inflection Point of Logistic Curve | |
Value of IV where predicted probability = 0.50 | |
Probability | Inflection_Point |
---|---|
0.5 | 14.965 |
# ------------------------------
# Install and load required packages
# ------------------------------
if (!require("tidyverse")) install.packages("tidyverse")
if (!require("gt")) install.packages("gt")
if (!require("gtExtras")) install.packages("gtExtras")
if (!require("plotly")) install.packages("plotly")
library(ggplot2)
library(dplyr)
library(gt)
library(gtExtras)
library(plotly)
# ------------------------------
# Read the data
# ------------------------------
mydata <- read.csv("ELM.csv") # <-- EDIT filename
# ################################################
# # (Optional) Remove specific case(es)s by row number
# ################################################
# # Example: remove rows 10 and 25
# rows_to_remove <- c(10, 25) # Edit and uncomment this line
# mydata <- mydata[-rows_to_remove, ] # Uncomment this line
# Specify dependent (DV) and independent (IV) variables
mydata$DV <- mydata$Favor_1 # <-- EDIT DV column
mydata$IV <- mydata$Minutes # <-- EDIT IV column
# Ensure DV is binary numeric (0/1)
mydata$DV <- as.numeric(as.character(mydata$DV))
# ------------------------------
# Logistic regression plot
# ------------------------------
logit_plot <- ggplot(mydata, aes(x = IV, y = DV)) +
geom_point(alpha = 0.5) + # scatterplot of observed data
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = FALSE,
color = "#1f78b4") +
labs(title = "Logistic Regression Curve",
x = "Independent Variable (IV)",
y = "Dependent Variable (DV)")
logit_plotly <- ggplotly(logit_plot)
# ------------------------------
# Run logistic regression
# ------------------------------
options(scipen = 999)
log.ed <- glm(DV ~ IV, data = mydata, family = "binomial")
# Extract coefficients and odds ratios
results <- broom::tidy(log.ed, conf.int = TRUE, exponentiate = TRUE) %>%
select(term, estimate, conf.low, conf.high, p.value) %>%
rename(Odds_Ratio = estimate,
CI_Lower = conf.low,
CI_Upper = conf.high,
P_Value = p.value)
# Display results as a nice gt table
results_table <- results %>%
gt() %>%
fmt_number(columns = c(Odds_Ratio, CI_Lower, CI_Upper), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Logistic Regression Results",
subtitle = "Odds Ratios with 95% Confidence Intervals"
)
# ------------------------------
# Check linearity of the logit (Box-Tidwell test)
# ------------------------------
# (Assumes IV > 0; shift IV if needed)
mydata$IV_log <- mydata$IV * log(mydata$IV)
linearity_test <- glm(DV ~ IV + IV_log, data = mydata, family = "binomial")
linearity_results <- broom::tidy(linearity_test) %>%
select(term, estimate, std.error, p.value) %>%
rename(Estimate = estimate,
Std_Error = std.error,
P_Value = p.value)
linearity_table <- linearity_results %>%
gt() %>%
fmt_number(columns = c(Estimate, Std_Error), decimals = 3) %>%
fmt_number(columns = P_Value, decimals = 4) %>%
tab_header(
title = "Linearity of the Logit Test (Box-Tidwell)",
subtitle = "Interaction term indicates violation if significant"
)
# ------------------------------
# Calculate the inflection point (p = .50)
# ------------------------------
p <- 0.50
Inflection_point <- (log(p/(1-p)) - coef(log.ed)[1]) / coef(log.ed)[2]
inflection_table <- tibble(
Probability = 0.5,
Inflection_Point = Inflection_point
) %>%
gt() %>%
fmt_number(columns = Inflection_Point, decimals = 3) %>%
tab_header(
title = "Inflection Point of Logistic Curve",
subtitle = "Value of IV where predicted probability = 0.50"
)
# ------------------------------
# Outputs
# ------------------------------
# Interactive plot
logit_plotly
# Tables
results_table
linearity_table
inflection_table
# Paste your complete, edited, tested, working R script here
# Paste - again - your complete R script, the same one pasted into the first code chunk, above. Pasting it were will display it.