Question number 1
library(pwr)
#min variability test
?power.anova.test
## starting httpd help server ... done
power.anova.test(groups=4,n=NULL,between.var=var(c(18,19,19,20)),within.var=3.5,sig.level=0.05,power=0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 20.08368
## between.var = 0.6666667
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
#intermediate variability test
power.anova.test(groups=4,n=NULL,between.var=var(c(18,18.67,19.33,20)),within.var=3.5,sig.level=0.05,power=0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 18.21285
## between.var = 0.7392667
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
#max variability
power.anova.test(groups=4,n=NULL,between.var=var(c(18,18,20,20)),within.var=3.5,sig.level=0.05,power=0.80)
##
## Balanced one-way analysis of variance power calculation
##
## groups = 4
## n = 10.56952
## between.var = 1.333333
## within.var = 3.5
## sig.level = 0.05
## power = 0.8
##
## NOTE: n is number in each group
Question number 2 (a)
fluid1<- c(17.6, 18.9, 16.3, 17.4, 20.1, 21.6)
fluid2<- c(16.9, 15.3, 18.6, 17.1, 19.5, 20.3)
fluid3<- c(21.4, 23.6, 19.4, 18.5, 20.5, 22.3)
fluid4<- c(19.3, 21.1, 16.9, 17.5, 18.3, 19.8)
fluid<- c(fluid1, fluid2, fluid3,fluid4)
fluid.type<-c(rep(1,6),rep(2,6),rep(3,6),rep(4,6))
df<- data.frame(fluid.type, fluid)
df
## fluid.type fluid
## 1 1 17.6
## 2 1 18.9
## 3 1 16.3
## 4 1 17.4
## 5 1 20.1
## 6 1 21.6
## 7 2 16.9
## 8 2 15.3
## 9 2 18.6
## 10 2 17.1
## 11 2 19.5
## 12 2 20.3
## 13 3 21.4
## 14 3 23.6
## 15 3 19.4
## 16 3 18.5
## 17 3 20.5
## 18 3 22.3
## 19 4 19.3
## 20 4 21.1
## 21 4 16.9
## 22 4 17.5
## 23 4 18.3
## 24 4 19.8
aov.model<-aov(fluid~fluid.type,data=df)
summary(aov.model)
## Df Sum Sq Mean Sq F value Pr(>F)
## fluid.type 1 3.67 3.675 0.874 0.36
## Residuals 22 92.48 4.204
The p value (0.0525) is less than the significance level. So, we reject null hypothesis. There is significant difference between the life of the fluids.
Question number 2(b)
plot(aov.model)
Conclusion:
Residuals vs Fitted plot: The residuals scattered randomly with in the range of fitted values, no pattern is observed so we can assume constant variance .
We can see from the Normal Probability plot, most of the values are pretty much in line with a single straight line; hence normality is indicated.
Question number 2(c)
df$fluid.type <- as.factor(df$fluid.type)
df
## fluid.type fluid
## 1 1 17.6
## 2 1 18.9
## 3 1 16.3
## 4 1 17.4
## 5 1 20.1
## 6 1 21.6
## 7 2 16.9
## 8 2 15.3
## 9 2 18.6
## 10 2 17.1
## 11 2 19.5
## 12 2 20.3
## 13 3 21.4
## 14 3 23.6
## 15 3 19.4
## 16 3 18.5
## 17 3 20.5
## 18 3 22.3
## 19 4 19.3
## 20 4 21.1
## 21 4 16.9
## 22 4 17.5
## 23 4 18.3
## 24 4 19.8
str(df)
## 'data.frame': 24 obs. of 2 variables:
## $ fluid.type: Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 2 2 2 2 ...
## $ fluid : num 17.6 18.9 16.3 17.4 20.1 21.6 16.9 15.3 18.6 17.1 ...
aov.model <- aov(fluid~fluid.type, data = df)
aov.model
## Call:
## aov(formula = fluid ~ fluid.type, data = df)
##
## Terms:
## fluid.type Residuals
## Sum of Squares 30.16500 65.99333
## Deg. of Freedom 3 20
##
## Residual standard error: 1.816498
## Estimated effects may be unbalanced
library(car)
## Loading required package: carData
?TukeyHSD
TukeyHSD(aov.model)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = fluid ~ fluid.type, data = df)
##
## $fluid.type
## diff lwr upr p adj
## 2-1 -0.7000000 -3.63540073 2.2354007 0.9080815
## 3-1 2.3000000 -0.63540073 5.2354007 0.1593262
## 4-1 0.1666667 -2.76873407 3.1020674 0.9985213
## 3-2 3.0000000 0.06459927 5.9354007 0.0440578
## 4-2 0.8666667 -2.06873407 3.8020674 0.8413288
## 4-3 -2.1333333 -5.06873407 0.8020674 0.2090635
plot(TukeyHSD(aov.model))
From the given plot, we can see that 0 does notlie in the confidence interval for fluid 3 and 2. So there is significant difference between the 2 and 3.
Complete R code
#Question number 1
library(pwr)
#min variability test
?power.anova.test
power.anova.test(groups=4,n=NULL,between.var=var(c(18,19,19,20)),within.var=3.5,sig.level=0.05,power=0.80)
#intermediate variability test
power.anova.test(groups=4,n=NULL,between.var=var(c(18,18.67,19.33,20)),within.var=3.5,sig.level=0.05,power=0.80)
#max variability
power.anova.test(groups=4,n=NULL,between.var=var(c(18,18,20,20)),within.var=3.5,sig.level=0.05,power=0.80)
#Question number 2
fluid1<- c(17.6, 18.9, 16.3, 17.4, 20.1, 21.6)
fluid2<- c(16.9, 15.3, 18.6, 17.1, 19.5, 20.3)
fluid3<- c(21.4, 23.6, 19.4, 18.5, 20.5, 22.3)
fluid4<- c(19.3, 21.1, 16.9, 17.5, 18.3, 19.8)
fluid<- c(fluid1, fluid2, fluid3,fluid4)
fluid.type<-c(rep(1,6),rep(2,6),rep(3,6),rep(4,6))
df<- data.frame(fluid.type, fluid)
df
aov.model<-aov(fluid~fluid.type,data=df)
summary(aov.model)
plot(aov.model)
df$fluid.type <- as.factor(df$fluid.type)
df
str(df)
aov.model <- aov(fluid~fluid.type, data = df)
aov.model
library(car)
?TukeyHSD
TukeyHSD(aov.model)
plot(TukeyHSD(aov.model))