library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
df_customer <- read.csv("df_customer.csv")
hasil <- df_customer %>%
filter(Total_Belanja > 5000000) %>%
group_by(ID_Pelanggan) %>%
summarise(JumlahTransaksi = n(), .groups = "drop") %>%
filter(JumlahTransaksi == max(JumlahTransaksi))
print(hasil)
## # A tibble: 2 × 2
## ID_Pelanggan JumlahTransaksi
## <chr> <int>
## 1 ID00007 7
## 2 ID00025 7
hasil2 <- df_customer %>%
filter(Total_Belanja > 5000000) %>%
count(ID_Pelanggan, sort = TRUE) %>%
slice_head(n=6)
hasil2
## ID_Pelanggan n
## 1 ID00007 7
## 2 ID00025 7
## 3 ID00026 6
## 4 ID00089 6
## 5 ID00053 5
## 6 ID00079 5
jumlah_hasil <- df_customer %>%
count(ID_Pelanggan, Jenis_Kelamin, Tempat_Tinggal, name = "Jumlah_Transaksi") %>%
filter(Jenis_Kelamin == "Perempuan",
Tempat_Tinggal == "Kota",
Jumlah_Transaksi > 5) %>%
nrow()
print(paste("Jawabannya adalah:", jumlah_hasil, "orang."))
## [1] "Jawabannya adalah: 0 orang."
q33 <- df_customer %>%
filter(Penghasilan > 5000000) %>%
count(ID_Pelanggan, sort = TRUE) %>%
slice_head(n = 1)
q33
## ID_Pelanggan n
## 1 ID00007 9
q44 <- df_customer %>%
filter(Tempat_Tinggal == "Desa", Total_Belanja > 5000000) %>%
count(Jenis_Kelamin)
q44
## Jenis_Kelamin n
## 1 Laki-laki 10
## 2 Perempuan 37
q55 <- df_customer %>%
filter(Tempat_Tinggal == "Desa", Total_Belanja > 5000000) %>%
select(ID_Pelanggan, Penghasilan) %>%
head(5)
q55
## ID_Pelanggan Penghasilan
## 1 ID00067 7773498
## 2 ID00014 6776730
## 3 ID00027 8108645
## 4 ID00089 9032981
## 5 ID00034 5616450