# Contoh data (silakan ganti dengan data kamu)
data <- data.frame(
Pelanggan = c("Ahmad", "Beni", "Chelsea", "Ahmad", "Beni", "Dimas", "Ahmad"),
Total_Belanja = c(6000000, 4000000, 7000000, 8000000, 9000000, 3000000, 10000000)
)
# Filter hanya transaksi dengan belanja > 5.000.000
data_filter <- subset(data, Total_Belanja > 5000000)
# Hitung frekuensi belanja per pelanggan
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
hasil <- data_filter %>%
group_by(Pelanggan) %>%
summarise(Jumlah_Transaksi = n()) %>%
arrange(desc(Jumlah_Transaksi))
# Tampilkan pelanggan yang paling sering belanja > 5 juta
hasil
## # A tibble: 3 × 2
## Pelanggan Jumlah_Transaksi
## <chr> <int>
## 1 Ahmad 3
## 2 Beni 1
## 3 Chelsea 1
data <- data.frame(
Pelanggan = c("Ahmad","Beni","Chelsea","Ahmad","Dimas","Ahmad","Chelsea","Beni","Chelsea","Ahmad"),
Penghasilan = c(6000000,4000000,7000000,6000000,8000000,
6000000,7000000,4000000,7000000,6000000)
)
library(dplyr)
hasil <- data %>%
filter(Penghasilan > 5000000) %>%
count(Pelanggan, sort = TRUE)
head(hasil, 1)
## Pelanggan n
## 1 Ahmad 4
# Data contoh
data <- data.frame(
Pelanggan = c("Ahmad","Beni","Chelsea","Ahmad","Dimas","Ahmad","Chelsea","Beni","Chelsea","Ahmad"),
Penghasilan = c(6000000,4000000,7000000,6000000,8000000,
6000000,7000000,4000000,7000000,6000000)
)
# Filter hanya penghasilan > 5 juta
data_filter <- data[data$Penghasilan > 5000000, ]
# Hitung siapa yang paling sering
tab <- table(data_filter$Pelanggan)
top_pelanggan <- names(which.max(tab))
cat("Pelanggan yang paling sering membeli dengan penghasilan > 5 juta adalah:",
top_pelanggan, "dengan", max(tab), "kali transaksi\n")
## Pelanggan yang paling sering membeli dengan penghasilan > 5 juta adalah: Ahmad dengan 4 kali transaksi
# Contoh data
data <- data.frame(
Pelanggan = c("Ahmad","Beni","Chelsea","Dimas","Maryam","Rahmat"),
Jenis_Kelamin = c("L","L","P","L","P","L"),
Tempat_Tinggal = c("Kota","Desa","Desa","Desa","Kota","Desa"),
Total_Belanja = c(4000000,6000000,7000000,3000000,9000000,8000000)
)
# Filter: tinggal di desa & belanja > 5 juta
data_filter <- subset(data, Tempat_Tinggal == "Desa" & Total_Belanja > 5000000)
# Ambil jenis kelamin pelanggan
print(data_filter[, c("Pelanggan","Jenis_Kelamin","Total_Belanja")])
## Pelanggan Jenis_Kelamin Total_Belanja
## 2 Beni L 6e+06
## 3 Chelsea P 7e+06
## 6 Rahmat L 8e+06
# Contoh data
data <- data.frame(
Pelanggan = c("Ahmad","Beni","Chelsea","Dimas","Maryam","Rahmat"),
Jenis_Kelamin = c("L","L","P","L","P","L"),
Tempat_Tinggal = c("Kota","Desa","Desa","Desa","Kota","Desa"),
Total_Belanja = c(4000000,6000000,7000000,3000000,9000000,8000000),
Penghasilan = c(7000000,8000000,6500000,5000000,10000000,9000000)
)
# Filter: tinggal di desa & belanja > 5 juta
data_filter <- subset(data, Tempat_Tinggal == "Desa" & Total_Belanja > 5000000)
# Tampilkan nama, penghasilan, dan total belanja
print(data_filter[, c("Pelanggan","Penghasilan","Total_Belanja")])
## Pelanggan Penghasilan Total_Belanja
## 2 Beni 8000000 6e+06
## 3 Chelsea 6500000 7e+06
## 6 Rahmat 9000000 8e+06