Coding basics

R as a calculator

880/ 3 + 15
## [1] 308.3333
x <- 880 / 3 + 15
x
## [1] 308.3333
library(tidyverse)
library(nycflights13)

Chapter 5, 1st Edition Book

#Import data

flights
## # A tibble: 336,776 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

Filter Rows

filter(flights, month == 1, day == 1)
## # A tibble: 842 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 832 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month == 1 | day == 1)
## # A tibble: 37,198 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 37,188 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, month == 1 & day == 1)
## # A tibble: 842 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 832 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
nov_dec <- filter(flights, month %in% c(11, 12))

#Exercise

filter(flights, dep_delay > 2)
## # A tibble: 114,149 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      533            529         4      850            830
##  2  2013     1     1      608            600         8      807            735
##  3  2013     1     1      611            600        11      945            931
##  4  2013     1     1      613            610         3      925            921
##  5  2013     1     1      623            610        13      920            915
##  6  2013     1     1      632            608        24      740            728
##  7  2013     1     1      644            636         8      931            940
##  8  2013     1     1      709            700         9      852            832
##  9  2013     1     1      732            729         3     1041           1039
## 10  2013     1     1      732            645        47     1011            941
## # ℹ 114,139 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
filter(flights, dest %in%  c("IAH","HOU"))
## # A tibble: 9,313 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      623            627        -4      933            932
##  4  2013     1     1      728            732        -4     1041           1038
##  5  2013     1     1      739            739         0     1104           1038
##  6  2013     1     1      908            908         0     1228           1219
##  7  2013     1     1     1028           1026         2     1350           1339
##  8  2013     1     1     1044           1045        -1     1352           1351
##  9  2013     1     1     1114            900       134     1447           1222
## 10  2013     1     1     1205           1200         5     1503           1505
## # ℹ 9,303 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>
filtered_flights <- filter(
  flights,
  carrier %in% c("UA", "AA", "DL"),
  month %in% c(7, 8, 9),                             
  arr_delay > 120,                                    
  dep_delay <= 0,                                     
  dep_delay >= 60, air_time - (arr_delay - dep_delay) >= 30,  
  dep_time >= 0 & dep_time <= 600                     
)

Arrange Rows

arrange(flights, desc(month), desc(day))
## # A tibble: 336,776 × 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013    12    31       13           2359        14      439            437
##  2  2013    12    31       18           2359        19      449            444
##  3  2013    12    31       26           2245       101      129           2353
##  4  2013    12    31      459            500        -1      655            651
##  5  2013    12    31      514            515        -1      814            812
##  6  2013    12    31      549            551        -2      925            900
##  7  2013    12    31      550            600       -10      725            745
##  8  2013    12    31      552            600        -8      811            826
##  9  2013    12    31      553            600        -7      741            754
## 10  2013    12    31      554            550         4     1024           1027
## # ℹ 336,766 more rows
## # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>

Select Colums

select(flights, year:dep_time)
## # A tibble: 336,776 × 4
##     year month   day dep_time
##    <int> <int> <int>    <int>
##  1  2013     1     1      517
##  2  2013     1     1      533
##  3  2013     1     1      542
##  4  2013     1     1      544
##  5  2013     1     1      554
##  6  2013     1     1      554
##  7  2013     1     1      555
##  8  2013     1     1      557
##  9  2013     1     1      557
## 10  2013     1     1      558
## # ℹ 336,766 more rows
select(flights, year, month, day, dep_time)
## # A tibble: 336,776 × 4
##     year month   day dep_time
##    <int> <int> <int>    <int>
##  1  2013     1     1      517
##  2  2013     1     1      533
##  3  2013     1     1      542
##  4  2013     1     1      544
##  5  2013     1     1      554
##  6  2013     1     1      554
##  7  2013     1     1      555
##  8  2013     1     1      557
##  9  2013     1     1      557
## 10  2013     1     1      558
## # ℹ 336,766 more rows
select(flights, year, month, day, dep_time, dep_delay)
## # A tibble: 336,776 × 5
##     year month   day dep_time dep_delay
##    <int> <int> <int>    <int>     <dbl>
##  1  2013     1     1      517         2
##  2  2013     1     1      533         4
##  3  2013     1     1      542         2
##  4  2013     1     1      544        -1
##  5  2013     1     1      554        -6
##  6  2013     1     1      554        -4
##  7  2013     1     1      555        -5
##  8  2013     1     1      557        -3
##  9  2013     1     1      557        -3
## 10  2013     1     1      558        -2
## # ℹ 336,766 more rows
select(flights, year, month, day, starts_with("dep"))
## # A tibble: 336,776 × 5
##     year month   day dep_time dep_delay
##    <int> <int> <int>    <int>     <dbl>
##  1  2013     1     1      517         2
##  2  2013     1     1      533         4
##  3  2013     1     1      542         2
##  4  2013     1     1      544        -1
##  5  2013     1     1      554        -6
##  6  2013     1     1      554        -4
##  7  2013     1     1      555        -5
##  8  2013     1     1      557        -3
##  9  2013     1     1      557        -3
## 10  2013     1     1      558        -2
## # ℹ 336,766 more rows
select(flights, year, month, day, contains("time"))
## # A tibble: 336,776 × 9
##     year month   day dep_time sched_dep_time arr_time sched_arr_time air_time
##    <int> <int> <int>    <int>          <int>    <int>          <int>    <dbl>
##  1  2013     1     1      517            515      830            819      227
##  2  2013     1     1      533            529      850            830      227
##  3  2013     1     1      542            540      923            850      160
##  4  2013     1     1      544            545     1004           1022      183
##  5  2013     1     1      554            600      812            837      116
##  6  2013     1     1      554            558      740            728      150
##  7  2013     1     1      555            600      913            854      158
##  8  2013     1     1      557            600      709            723       53
##  9  2013     1     1      557            600      838            846      140
## 10  2013     1     1      558            600      753            745      138
## # ℹ 336,766 more rows
## # ℹ 1 more variable: time_hour <dttm>
select(flights, year, month, day, ends_with("time"))
## # A tibble: 336,776 × 8
##     year month   day dep_time sched_dep_time arr_time sched_arr_time air_time
##    <int> <int> <int>    <int>          <int>    <int>          <int>    <dbl>
##  1  2013     1     1      517            515      830            819      227
##  2  2013     1     1      533            529      850            830      227
##  3  2013     1     1      542            540      923            850      160
##  4  2013     1     1      544            545     1004           1022      183
##  5  2013     1     1      554            600      812            837      116
##  6  2013     1     1      554            558      740            728      150
##  7  2013     1     1      555            600      913            854      158
##  8  2013     1     1      557            600      709            723       53
##  9  2013     1     1      557            600      838            846      140
## 10  2013     1     1      558            600      753            745      138
## # ℹ 336,766 more rows
select(flights, year, month, day, contains("time"))
## # A tibble: 336,776 × 9
##     year month   day dep_time sched_dep_time arr_time sched_arr_time air_time
##    <int> <int> <int>    <int>          <int>    <int>          <int>    <dbl>
##  1  2013     1     1      517            515      830            819      227
##  2  2013     1     1      533            529      850            830      227
##  3  2013     1     1      542            540      923            850      160
##  4  2013     1     1      544            545     1004           1022      183
##  5  2013     1     1      554            600      812            837      116
##  6  2013     1     1      554            558      740            728      150
##  7  2013     1     1      555            600      913            854      158
##  8  2013     1     1      557            600      709            723       53
##  9  2013     1     1      557            600      838            846      140
## 10  2013     1     1      558            600      753            745      138
## # ℹ 336,766 more rows
## # ℹ 1 more variable: time_hour <dttm>

Add Colums

mutate(flights,
       gain = dep_delay - arr_delay) %>%
    
    select(year:day, gain)
## # A tibble: 336,776 × 4
##     year month   day  gain
##    <int> <int> <int> <dbl>
##  1  2013     1     1    -9
##  2  2013     1     1   -16
##  3  2013     1     1   -31
##  4  2013     1     1    17
##  5  2013     1     1    19
##  6  2013     1     1   -16
##  7  2013     1     1   -24
##  8  2013     1     1    11
##  9  2013     1     1     5
## 10  2013     1     1   -10
## # ℹ 336,766 more rows
mutate(flights,
       gain = dep_delay - arr_delay) %>%
    
    select(gain)
## # A tibble: 336,776 × 1
##     gain
##    <dbl>
##  1    -9
##  2   -16
##  3   -31
##  4    17
##  5    19
##  6   -16
##  7   -24
##  8    11
##  9     5
## 10   -10
## # ℹ 336,766 more rows
transmute(flights,
          gain = dep_delay - arr_delay)
## # A tibble: 336,776 × 1
##     gain
##    <dbl>
##  1    -9
##  2   -16
##  3   -31
##  4    17
##  5    19
##  6   -16
##  7   -24
##  8    11
##  9     5
## 10   -10
## # ℹ 336,766 more rows
select(flights, dep_time) %>%
    mutate(dep_time_lag1 = lag(dep_time))
## # A tibble: 336,776 × 2
##    dep_time dep_time_lag1
##       <int>         <int>
##  1      517            NA
##  2      533           517
##  3      542           533
##  4      544           542
##  5      554           544
##  6      554           554
##  7      555           554
##  8      557           555
##  9      557           557
## 10      558           557
## # ℹ 336,766 more rows
select(flights, minute) %>%
    mutate(minute_cumsum = cumsum(minute))
## # A tibble: 336,776 × 2
##    minute minute_cumsum
##     <dbl>         <dbl>
##  1     15            15
##  2     29            44
##  3     40            84
##  4     45           129
##  5      0           129
##  6     58           187
##  7      0           187
##  8      0           187
##  9      0           187
## 10      0           187
## # ℹ 336,766 more rows

#Useful Creation Functions

(x <- 1:10)
##  [1]  1  2  3  4  5  6  7  8  9 10
#>  [1]  1  2  3  4  5  6  7  8  9 10
lag(x)
##  [1] NA  1  2  3  4  5  6  7  8  9
#>  [1] NA  1  2  3  4  5  6  7  8  9
lead(x)
##  [1]  2  3  4  5  6  7  8  9 10 NA
#>  [1]  2  3  4  5  6  7  8  9 10 NA
transmute(flights,
  dep_time,
  hour = dep_time %/% 100,
  minute = dep_time %% 100
)
## # A tibble: 336,776 × 3
##    dep_time  hour minute
##       <int> <dbl>  <dbl>
##  1      517     5     17
##  2      533     5     33
##  3      542     5     42
##  4      544     5     44
##  5      554     5     54
##  6      554     5     54
##  7      555     5     55
##  8      557     5     57
##  9      557     5     57
## 10      558     5     58
## # ℹ 336,766 more rows
y <- c(1, 2, 2, NA, 3, 4)
min_rank(y)
## [1]  1  2  2 NA  4  5
#> [1]  1  2  2 NA  4  5
min_rank(desc(y))
## [1]  5  3  3 NA  2  1
#> [1]  5  3  3 NA  2  1

#Exercise

flights <- flights %>%
  mutate(
    dep_time_mins = (dep_time %/% 100) * 60 + (dep_time %% 100),
    sched_dep_time_mins = (sched_dep_time %/% 100) * 60 + (sched_dep_time %% 100)
  )

flights %>%
  filter(!is.na(dep_delay)) %>%
  mutate(rank = min_rank(desc(dep_delay))) %>%
  filter(rank <= 10) %>%
  arrange(desc(dep_delay))
## # A tibble: 10 × 22
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     9      641            900      1301     1242           1530
##  2  2013     6    15     1432           1935      1137     1607           2120
##  3  2013     1    10     1121           1635      1126     1239           1810
##  4  2013     9    20     1139           1845      1014     1457           2210
##  5  2013     7    22      845           1600      1005     1044           1815
##  6  2013     4    10     1100           1900       960     1342           2211
##  7  2013     3    17     2321            810       911      135           1020
##  8  2013     6    27      959           1900       899     1236           2226
##  9  2013     7    22     2257            759       898      121           1026
## 10  2013    12     5      756           1700       896     1058           2020
## # ℹ 14 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, dep_time_mins <dbl>,
## #   sched_dep_time_mins <dbl>, rank <int>

Summarize By Groups Combining Operations With Pipe

by_dest <- group_by(flights, dest)
delay <- summarise(by_dest,
  count = n(),
  dist = mean(distance, na.rm = TRUE),
  delay = mean(arr_delay, na.rm = TRUE)
)
delay <- filter(delay, count > 20, dest != "HNL")

# It looks like delays increase with distance up to ~750 miles 
# and then decrease. Maybe as flights get longer there's more 
# ability to make up delays in the air?
ggplot(data = delay, mapping = aes(x = dist, y = delay)) +
  geom_point(aes(size = count), alpha = 1/3) +
  geom_smooth(se = FALSE)

#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Another way to tackle

delays <- flights %>% 
  group_by(dest) %>% 
  summarise(
    count = n(),
    dist = mean(distance, na.rm = TRUE),
    delay = mean(arr_delay, na.rm = TRUE)
  ) %>% 
  filter(count > 20, dest != "HNL")
flights %>%
    group_by(dest) %>%
    summarize(count =n(),
              dist = mean(distance, na.rm = TRUE),
              delay = mean(arr_delay, na.rm = TRUE)) %>%

    ggplot(mapping = aes(x = dist, y = delay)) + 
    geom_point(aes(size = count), alpha = 0.3) +
    geom_smooth(se = FALSE)
## Warning: Removed 1 row containing non-finite outside the scale range
## (`stat_smooth()`).
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).

Missing Values

flights %>%
    filter(!is.na(dep_delay), !is.na(arr_delay))
## # A tibble: 327,346 × 21
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ℹ 327,336 more rows
## # ℹ 13 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## #   hour <dbl>, minute <dbl>, time_hour <dttm>, dep_time_mins <dbl>,
## #   sched_dep_time_mins <dbl>
not_cancelled <- flights %>%
  filter(!is.na(dep_delay), !is.na(arr_delay))

delays <- not_cancelled %>% 
  group_by(tailnum) %>% 
  summarise(delay = mean(arr_delay))

ggplot(data = delays, mapping = aes(x = delay)) + 
  geom_freqpoly(binwidth = 10)

not_cancelled <- flights %>%
    filter(!is.na(dep_delay), !is.na(arr_delay))

delays <- not_cancelled %>% 
  group_by(tailnum) %>% 
  summarise(delay = mean(arr_delay, na.rm = TRUE),
    n = n()
  )
ggplot(data = delays, mapping = aes(x = n, y = delay)) + 
  geom_point(alpha = 1/10)