Original data

n=450 DCI identified calciphylaxis patients with available onset date and correct death date.

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   85 / 251 (33.9 %)   63 / 199 (31.7 %)   0.694
## 2        race  158 / 245 (64.5 %)  117 / 198 (59.1 %)   0.286
## 3   ethnicity   26 / 242 (10.7 %)     7 / 198 (3.5 %)   0.007
## 4         age   58.5 + 12.8 (251)   54.8 + 12.9 (199)   0.002
## 5    diabetes  157 / 251 (62.5 %)  111 / 199 (55.8 %)   0.175
## 6          dm   58 / 251 (23.1 %)   68 / 199 (34.2 %)   0.013
## 7         bmi    32.2 + 8.7 (251)    32.0 + 8.8 (199)   0.826
## 8     calcium     8.8 + 0.8 (235)     8.9 + 1.0 (176)   0.491
## 9   phosphate     6.1 + 1.9 (234)     6.6 + 2.1 (176)   0.022
## 10        pth 517.9 + 484.1 (223) 553.2 + 609.8 (162)   0.528
## 11    alkphos 174.0 + 134.3 (235) 211.9 + 223.6 (175)   0.034
## 12    albumin     3.4 + 0.6 (235)     3.4 + 0.6 (175)   0.701
## 13   warfarin    16 / 251 (6.4 %)     5 / 199 (2.5 %)   0.088
## 14 cinacalcet  110 / 251 (43.8 %)   60 / 199 (30.2 %)   0.004
## 15         vd  135 / 251 (53.8 %)   92 / 199 (46.2 %)   0.134

Mathed sample

n=406 Matched AGE + ETHNICITY + DM (PD/HD)

matchit(trt~age+ethnicity+dm, data=na.exclude(dat[,c(1,9,11,4,15)]), method="nearest") -> m.out
m.data1 <- match.data(m.out)
dat.m <- subset(dat, patient_id %in% m.data1$patient_id | is.na(dat$ethnicity ))

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   72 / 207 (34.8 %)   63 / 199 (31.7 %)   0.574
## 2        race  123 / 202 (60.9 %)  117 / 198 (59.1 %)   0.791
## 3   ethnicity     3 / 198 (1.5 %)     7 / 198 (3.5 %)   0.337
## 4         age   56.7 + 11.6 (207)   54.8 + 12.9 (199)   0.120
## 5    diabetes  129 / 207 (62.3 %)  111 / 199 (55.8 %)   0.215
## 6          dm   55 / 207 (26.6 %)   68 / 199 (34.2 %)   0.119
## 7         bmi    32.8 + 9.0 (207)    32.0 + 8.8 (199)   0.377
## 8     calcium     8.8 + 0.8 (193)     8.9 + 1.0 (176)   0.482
## 9   phosphate     6.2 + 2.0 (192)     6.6 + 2.1 (176)   0.070
## 10        pth 514.2 + 448.9 (182) 553.2 + 609.8 (162)   0.497
## 11    alkphos 174.0 + 132.2 (193) 211.9 + 223.6 (175)   0.046
## 12    albumin     3.3 + 0.6 (193)     3.4 + 0.6 (175)   0.191
## 13   warfarin    14 / 207 (6.8 %)     5 / 199 (2.5 %)   0.073
## 14 cinacalcet   89 / 207 (43.0 %)   60 / 199 (30.2 %)   0.010
## 15         vd  109 / 207 (52.7 %)   92 / 199 (46.2 %)   0.232

Kaplan Meier Curve

km1 <- survfit(Surv(len_fu2, death)~trt, data=dat.m)
plot(km1, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 207    112    424     331     824
## trt=0 199    131    684     430    1011

Kaplan Meier Curve with 1 yr follow up

dat.m$death.1y <- (dat.m$death==1 & dat.m$len_fu2 < 365.25)
dat.m$len_fu.1y <- as.numeric(ifelse(dat.m$len_fu2 > 365.25, 365.25, dat.m$len_fu2))

km1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.m)
plot(km1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 207     82     NA     331      NA
## trt=0 199     74     NA      NA      NA

Kaplan Meier Curve with 2 yrs follow up

dat.m$death.2y <- (dat.m$death==1 & dat.m$len_fu2 < 365.25*2)
dat.m$len_fu.2y <- as.numeric(ifelse(dat.m$len_fu2 > 365.25*2, 365.25*2, dat.m$len_fu2))

km2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.m)
plot(km2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.m)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 207     98    424     331      NA
## trt=0 199     93    684     430      NA

Patients with Caliphylaxis diagnostic date only

n=324 DCI mathed sample with available onset diagnostic date.

dat.m.calci <- subset(dat.m, CalciDiag==1)

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   46 / 125 (36.8 %)   63 / 199 (31.7 %)   0.405
## 2        race   77 / 122 (63.1 %)  117 / 198 (59.1 %)   0.550
## 3   ethnicity     2 / 119 (1.7 %)     7 / 198 (3.5 %)   0.540
## 4         age   57.5 + 11.3 (125)   54.8 + 12.9 (199)   0.059
## 5    diabetes   84 / 125 (67.2 %)  111 / 199 (55.8 %)   0.054
## 6          dm   32 / 125 (25.6 %)   68 / 199 (34.2 %)   0.133
## 7         bmi    32.7 + 8.7 (125)    32.0 + 8.8 (199)   0.487
## 8     calcium     8.8 + 0.9 (112)     8.9 + 1.0 (176)   0.520
## 9   phosphate     6.5 + 1.9 (111)     6.6 + 2.1 (176)   0.637
## 10        pth 613.4 + 517.2 (107) 553.2 + 609.8 (162)   0.401
## 11    alkphos 172.3 + 137.3 (112) 211.9 + 223.6 (175)   0.093
## 12    albumin     3.2 + 0.6 (112)     3.4 + 0.6 (175)   0.067
## 13   warfarin     9 / 125 (7.2 %)     5 / 199 (2.5 %)   0.082
## 14 cinacalcet   56 / 125 (44.8 %)   60 / 199 (30.2 %)   0.011
## 15         vd   66 / 125 (52.8 %)   92 / 199 (46.2 %)   0.300

Kaplan Meier Curve for Caliphylaxis diagnostic patients

km.calci <- survfit(Surv(len_fu2, death)~trt, data=dat.m.calci)
plot(km.calci, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 1 yr follow up for Caliphylaxis diagnostic patients

km1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat.m.calci)
plot(km1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.m.calci)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 125     51     NA     327      NA
## trt=0 199     74     NA      NA      NA

Kaplan Meier Curve with 2 yrs follow up for Caliphylaxis diagnostic patients

km2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.m.calci)
plot(km2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.m.calci)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 125     61    417     327      NA
## trt=0 199     93    684     430      NA

delayed treatment analysis (STS patients only)

n=134 DCI mathed sample with available STS treatment date. Delete 7 out of 141 patients who have STS treatment date before calciphylaxis diagnostic date. Final n=134. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

# delay treatment
dat.m.sts <- subset(dat.m.calci, trt==1)
dat.m.sts$delay <- as.numeric(difftime(as.Date(dat.m.sts$STSStartDate, "%m/%d/%Y"), as.Date(dat.m.sts$CalciDiagDate, "%m/%d/%Y"), units="days"))
dat.m.sts2 <- subset(dat.m.sts, delay >= 0)
dat.m.sts2$group <- dat.m.sts2$delay <= 14

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex   18 / 47 (38.3 %)   27 / 72 (37.5 %)   >.999
## 2        race   30 / 47 (63.8 %)   46 / 69 (66.7 %)   0.907
## 3   ethnicity     0 / 45 (0.0 %)     1 / 68 (1.5 %)   >.999
## 4         age   56.7 + 10.5 (47)   58.4 + 10.9 (72)     0.4
## 5    diabetes   35 / 47 (74.5 %)   47 / 72 (65.3 %)   0.392
## 6          dm   11 / 47 (23.4 %)   18 / 72 (25.0 %)   >.999
## 7         bmi    34.1 + 9.3 (47)    32.5 + 8.1 (72)   0.325
## 8     calcium     8.8 + 0.8 (39)     8.8 + 0.9 (67)   0.971
## 9   phosphate     6.7 + 2.1 (39)     6.2 + 1.7 (66)   0.173
## 10        pth 675.0 + 657.7 (37) 580.8 + 435.9 (64)   0.389
## 11    alkphos 188.1 + 190.5 (39)  159.4 + 87.6 (67)   0.293
## 12    albumin     3.3 + 0.5 (39)     3.2 + 0.7 (67)   0.365
## 13   warfarin     2 / 47 (4.3 %)     7 / 72 (9.7 %)   0.454
## 14 cinacalcet   22 / 47 (46.8 %)   32 / 72 (44.4 %)   0.948
## 15         vd   28 / 47 (59.6 %)   36 / 72 (50.0 %)   0.403

Kaplan Meier Curve for STS patients

km.delay <- survfit(Surv(len_fu2, death)~group, data=dat.m.sts2)
plot(km.delay, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 1 yr follow up for Caliphylaxis diagnostic patients

km.delay.1y <- survfit(Surv(len_fu.1y, death.1y)~group, data=dat.m.sts2)
plot(km.delay.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 2 yrs follow up for Caliphylaxis diagnostic patients

km.delay.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.m.sts2)
plot(km.delay.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))