Do not change anything in the following chunk
You will be working on olympic_gymnasts dataset. Do not change the code below:
olympics <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-07-27/olympics.csv')
olympic_gymnasts <- olympics %>%
filter(!is.na(age)) %>% # only keep athletes with known age
filter(sport == "Gymnastics") %>% # keep only gymnasts
mutate(
medalist = case_when( # add column for success in medaling
is.na(medal) ~ FALSE, # NA values go to FALSE
!is.na(medal) ~ TRUE # non-NA values (Gold, Silver, Bronze) go to TRUE
)
)
More information about the dataset can be found at
https://github.com/rfordatascience/tidytuesday/blob/master/data/2021/2021-07-27/readme.md
Question 1: Create a subset dataset with the following columns only: name, sex, age, team, year and medalist. Call it df.
df<- olympic_gymnasts|>
select(name, sex, age, team, year, medalist)
df
## # A tibble: 25,528 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 2 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 3 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 4 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 5 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 6 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 7 Paavo Johannes Aaltonen M 28 Finland 1948 FALSE
## 8 Paavo Johannes Aaltonen M 28 Finland 1948 TRUE
## 9 Paavo Johannes Aaltonen M 32 Finland 1952 FALSE
## 10 Paavo Johannes Aaltonen M 32 Finland 1952 TRUE
## # ℹ 25,518 more rows
Question 2: From df create df2 that only have year of 2008 2012, and 2016
df2 <- df |>
filter(year %in% c(2008, 2012, 2016))
df2
## # A tibble: 2,703 × 6
## name sex age team year medalist
## <chr> <chr> <dbl> <chr> <dbl> <lgl>
## 1 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 2 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 3 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 4 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 5 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 6 Nstor Abad Sanjun M 23 Spain 2016 FALSE
## 7 Katja Abel F 25 Germany 2008 FALSE
## 8 Katja Abel F 25 Germany 2008 FALSE
## 9 Katja Abel F 25 Germany 2008 FALSE
## 10 Katja Abel F 25 Germany 2008 FALSE
## # ℹ 2,693 more rows
Question 3 Group by these three years (2008,2012, and 2016) and summarize the mean of the age in each group.
df2 |>
group_by(year) |>
summarize(mean_age = mean(age))
## # A tibble: 3 × 2
## year mean_age
## <dbl> <dbl>
## 1 2008 21.6
## 2 2012 21.9
## 3 2016 22.2
Question 4 Use olympic_gymnasts dataset, group by year, and find the mean of the age for each year, call this dataset oly_year. (optional after creating the dataset, find the minimum average age)
oly_year <- olympic_gymnasts |>
group_by(year) |>
summarize(oly_year_age = mean(age))
oly_year
## # A tibble: 29 × 2
## year oly_year_age
## <dbl> <dbl>
## 1 1896 24.3
## 2 1900 22.2
## 3 1904 25.1
## 4 1906 24.7
## 5 1908 23.2
## 6 1912 24.2
## 7 1920 26.7
## 8 1924 27.6
## 9 1928 25.6
## 10 1932 23.9
## # ℹ 19 more rows
oly_year |>
filter(oly_year_age == min(oly_year_age))
## # A tibble: 1 × 2
## year oly_year_age
## <dbl> <dbl>
## 1 1988 19.9
Question 5 This question is open ended. Create a question that requires you to use at least two verbs. Create a code that answers your question. Then below the chunk, reflect on your question choice and coding procedure
# Filter the dataset to find only the gold medalists. Then, find the average height of the gold medalists.
oly_gold <- olympics |>
filter(medal == "Gold")
oly_gold |>
summarize(mean_height = mean(height, na.rm = T))
## # A tibble: 1 × 1
## mean_height
## <dbl>
## 1 178.
Discussion: I chose the question because I was curious to see what the average height of the gold medalists was. The coding process itself was simple. I created a new dataset called oly_gold which is the olympics dataset filtered to have only the gold medalists. From there, all I wanted to do was find the average height in the oly_gold dataset. To do this, I used the summarize feature which included the mean function for the height column. At first, it gave me an NA so I included the na.rm function to remove the NA’s.