This report analyzes bike prices from the bikes.xlsx
dataset.
We look at the most expensive models and those priced above the
average.
library(tidyverse)
library(readxl)
library(writexl)
bikes <- read_excel("bikes.xlsx")
bikes %>%
select(model, price) %>%
arrange(desc(price)) %>%
head(10)
## # A tibble: 10 × 2
## model price
## <chr> <dbl>
## 1 Supersix Evo Black Inc. 12790
## 2 Scalpel-Si Black Inc. 12790
## 3 Habit Hi-Mod Black Inc. 12250
## 4 F-Si Black Inc. 11190
## 5 Supersix Evo Hi-Mod Team 10660
## 6 Synapse Hi-Mod Disc Black Inc. 9590
## 7 Scalpel-Si Race 9060
## 8 F-Si Hi-Mod Team 9060
## 9 Trigger Carbon 1 8200
## 10 Supersix Evo Hi-Mod Dura Ace 1 7990
bikes %>%
select(model, price) %>%
filter(price > mean(price, na.rm = TRUE))
## # A tibble: 35 × 2
## model price
## <chr> <dbl>
## 1 Supersix Evo Black Inc. 12790
## 2 Supersix Evo Hi-Mod Team 10660
## 3 Supersix Evo Hi-Mod Dura Ace 1 7990
## 4 Supersix Evo Hi-Mod Dura Ace 2 5330
## 5 Supersix Evo Hi-Mod Utegra 4260
## 6 CAAD12 Black Inc 5860
## 7 CAAD12 Disc Dura Ace 4260
## 8 Synapse Hi-Mod Disc Black Inc. 9590
## 9 Synapse Hi-Mod Disc Red 7460
## 10 Synapse Hi-Mod Dura Ace 5860
## # ℹ 25 more rows
bikes %>%
summarise(
average_price = mean(price, na.rm = TRUE),
min_price = min(price, na.rm = TRUE),
max_price = max(price, na.rm = TRUE),
n_models = n()
)
## # A tibble: 1 × 4
## average_price min_price max_price n_models
## <dbl> <dbl> <dbl> <int>
## 1 3954. 415 12790 97