Original data

n=450 DCI identified calciphylaxis patients with available onset date and correct death date.

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   85 / 251 (33.9 %)   63 / 199 (31.7 %)   0.694
## 2        race  158 / 245 (64.5 %)  117 / 198 (59.1 %)   0.286
## 3   ethnicity   26 / 242 (10.7 %)     7 / 198 (3.5 %)   0.007
## 4         age   58.5 + 12.8 (251)   54.8 + 12.9 (199)   0.002
## 5    diabetes  157 / 251 (62.5 %)  111 / 199 (55.8 %)   0.175
## 6          dm   58 / 251 (23.1 %)   68 / 199 (34.2 %)   0.013
## 7         bmi    32.2 + 8.7 (251)    32.0 + 8.8 (199)   0.826
## 8     calcium     8.8 + 0.8 (235)     8.9 + 1.0 (176)   0.491
## 9   phosphate     6.1 + 1.9 (234)     6.6 + 2.1 (176)   0.022
## 10        pth 517.9 + 484.1 (223) 553.2 + 609.8 (162)   0.528
## 11    alkphos 174.0 + 134.3 (235) 211.9 + 223.6 (175)   0.034
## 12    albumin     3.4 + 0.6 (235)     3.4 + 0.6 (175)   0.701
## 13   warfarin    16 / 251 (6.4 %)     5 / 199 (2.5 %)   0.088
## 14 cinacalcet  110 / 251 (43.8 %)   60 / 199 (30.2 %)   0.004
## 15         vd  135 / 251 (53.8 %)   92 / 199 (46.2 %)   0.134

Kaplan Meier Curve

km1 <- survfit(Surv(len_fu2, death)~trt, data=dat)
plot(km1, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1
## Call: survfit(formula = Surv(len_fu2, death) ~ trt, data = dat)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 251    137    445     370     786
## trt=0 199    131    684     430    1011

Kaplan Meier Curve with 1 yr follow up

dat$death.1y <- (dat$death==1 & dat$len_fu2 < 365.25)
dat$len_fu.1y <- as.numeric(ifelse(dat$len_fu2 > 365.25, 365.25, dat$len_fu2))

km1y <- survfit(Surv(len_fu.1y, death.1y)~trt, data=dat)
plot(km1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 251     96     NA      NA      NA
## trt=0 199     74     NA      NA      NA

Kaplan Meier Curve with 2 yrs follow up

dat$death.2y <- (dat$death==1 & dat$len_fu2 < 365.25*2)
dat$len_fu.2y <- as.numeric(ifelse(dat$len_fu2 > 365.25*2, 365.25*2, dat$len_fu2))

km2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat)
plot(km2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 251    117    445     370      NA
## trt=0 199     93    684     430      NA

Patients with Caliphylaxis diagnostic date only

n=340 DCI identified calciphylaxis patients with available onset diagnostic date.

dat.calci <- subset(dat, CalciDiag==1)

Baseline information

##      Variable           Treatment             Control P.Value
## 1         sex   50 / 141 (35.5 %)   63 / 199 (31.7 %)   0.538
## 2        race   91 / 138 (65.9 %)  117 / 198 (59.1 %)   0.247
## 3   ethnicity     7 / 135 (5.2 %)     7 / 198 (3.5 %)   0.647
## 4         age   59.3 + 12.2 (141)   54.8 + 12.9 (199)   0.001
## 5    diabetes   97 / 141 (68.8 %)  111 / 199 (55.8 %)   0.021
## 6          dm   33 / 141 (23.4 %)   68 / 199 (34.2 %)   0.043
## 7         bmi    32.5 + 8.4 (141)    32.0 + 8.8 (199)   0.591
## 8     calcium     8.8 + 0.8 (126)     8.9 + 1.0 (176)   0.517
## 9   phosphate     6.4 + 1.9 (125)     6.6 + 2.1 (176)   0.545
## 10        pth 605.0 + 500.4 (120) 553.2 + 609.8 (162)   0.448
## 11    alkphos 167.6 + 131.7 (126) 211.9 + 223.6 (175)   0.048
## 12    albumin     3.3 + 0.6 (126)     3.4 + 0.6 (175)   0.196
## 13   warfarin    11 / 141 (7.8 %)     5 / 199 (2.5 %)   0.045
## 14 cinacalcet   65 / 141 (46.1 %)   60 / 199 (30.2 %)   0.004
## 15         vd   74 / 141 (52.5 %)   92 / 199 (46.2 %)   0.305

Kaplan Meier Curve for Caliphylaxis diagnostic patients

km.calci <- survfit(Surv(len_fu2, death)~trt, data=dat.calci)
plot(km.calci, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 1 yr follow up for Caliphylaxis diagnostic patients

km1y <- survfit(Surv(len_fu.1y, death.1y)~trt, dat=dat.calci)
plot(km1y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km1y
## Call: survfit(formula = Surv(len_fu.1y, death.1y) ~ trt, data = dat.calci)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 141     58     NA     327      NA
## trt=0 199     74     NA      NA      NA

Kaplan Meier Curve with 2 yrs follow up for Caliphylaxis diagnostic patients

km2y <- survfit(Surv(len_fu.2y, death.2y)~trt, data=dat.calci)
plot(km2y, col=c("blue", "red"))
legend("topright", c("STS", "non-STS"), lty=1, col=c("red", "blue"))

km2y
## Call: survfit(formula = Surv(len_fu.2y, death.2y) ~ trt, data = dat.calci)
## 
##         n events median 0.95LCL 0.95UCL
## trt=1 141     71    409     327      NA
## trt=0 199     93    684     430      NA

delayed treatment analysis (STS patients only)

n=141 DCI identified calciphylaxis patients with available STS treatment date. Delete 7 out of 141 patients who have STS treatment date before calciphylaxis diagnostic date. Final n=134. Choose group cutoff as 14 days, i.e. patients who have there treatment within 14 days of diagnostics as a group.

# delay treatment
dat.sts <- subset(dat.calci, trt==1)
dat.sts$delay <- as.numeric(difftime(as.Date(dat.sts$STSStartDate, "%m/%d/%Y"), as.Date(dat.sts$CalciDiagDate, "%m/%d/%Y"), units="days"))
dat.sts2 <- subset(dat.sts, delay >= 0)
dat.sts2$group <- dat.sts2$delay <= 14

Baseline information

##      Variable          Treatment            Control P.Value
## 1         sex   18 / 50 (36.0 %)   30 / 84 (35.7 %)   >.999
## 2        race   32 / 50 (64.0 %)   57 / 81 (70.4 %)   0.571
## 3   ethnicity     2 / 48 (4.2 %)     4 / 80 (5.0 %)   >.999
## 4         age   56.8 + 10.7 (50)   61.1 + 12.1 (84)   0.044
## 5    diabetes   38 / 50 (76.0 %)   57 / 84 (67.9 %)    0.42
## 6          dm   12 / 50 (24.0 %)   18 / 84 (21.4 %)   0.896
## 7         bmi    34.0 + 9.1 (50)    32.3 + 7.8 (84)   0.234
## 8     calcium     8.8 + 0.9 (41)     8.8 + 0.8 (78)   0.697
## 9   phosphate     6.7 + 2.0 (41)     6.2 + 1.7 (77)   0.186
## 10        pth 660.5 + 643.8 (39) 579.4 + 426.2 (74)   0.425
## 11    alkphos 186.9 + 185.7 (41)  155.4 + 85.3 (78)   0.207
## 12    albumin     3.3 + 0.5 (41)     3.3 + 0.7 (78)   0.788
## 13   warfarin     2 / 50 (4.0 %)    9 / 84 (10.7 %)   0.296
## 14 cinacalcet   23 / 50 (46.0 %)   39 / 84 (46.4 %)   >.999
## 15         vd   29 / 50 (58.0 %)   43 / 84 (51.2 %)   0.558

Kaplan Meier Curve for STS patients

km.delay <- survfit(Surv(len_fu2, death)~group, dat=dat.sts2)
plot(km.delay, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 1 yr follow up for Caliphylaxis diagnostic patients

km.delay.1y <- survfit(Surv(len_fu.1y, death.1y)~group, dat=dat.sts2)
plot(km.delay.1y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))

Kaplan Meier Curve with 2 yrs follow up for Caliphylaxis diagnostic patients

km.delay.2y <- survfit(Surv(len_fu.2y, death.2y)~group, data=dat.sts2)
plot(km.delay.2y, col=c("blue", "red"))
legend("topright", c("> 14 days", "<= 14 days"), lty=1, col=c("red", "blue"))