Assigment 3 by Brett Robin

1. 35 x 142. I used structure function to find how many rows and columns there are.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.2     ✔ tibble    3.3.0
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.1
## ✔ purrr     1.1.0     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
census <- read_csv("census.csv")
## Rows: 3142 Columns: 35
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr  (2): state, county
## dbl (33): census_id, total_pop, men, women, hispanic, white, black, native, ...
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
str(census)
## spc_tbl_ [3,142 × 35] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ census_id     : num [1:3142] 1001 1003 1005 1007 1009 ...
##  $ state         : chr [1:3142] "Alabama" "Alabama" "Alabama" "Alabama" ...
##  $ county        : chr [1:3142] "Autauga" "Baldwin" "Barbour" "Bibb" ...
##  $ total_pop     : num [1:3142] 55221 195121 26932 22604 57710 ...
##  $ men           : num [1:3142] 26745 95314 14497 12073 28512 ...
##  $ women         : num [1:3142] 28476 99807 12435 10531 29198 ...
##  $ hispanic      : num [1:3142] 2.6 4.5 4.6 2.2 8.6 4.4 1.2 3.5 0.4 1.5 ...
##  $ white         : num [1:3142] 75.8 83.1 46.2 74.5 87.9 22.2 53.3 73 57.3 91.7 ...
##  $ black         : num [1:3142] 18.5 9.5 46.7 21.4 1.5 70.7 43.8 20.3 40.3 4.8 ...
##  $ native        : num [1:3142] 0.4 0.6 0.2 0.4 0.3 1.2 0.1 0.2 0.2 0.6 ...
##  $ asian         : num [1:3142] 1 0.7 0.4 0.1 0.1 0.2 0.4 0.9 0.8 0.3 ...
##  $ pacific       : num [1:3142] 0 0 0 0 0 0 0 0 0 0 ...
##  $ citizen       : num [1:3142] 40725 147695 20714 17495 42345 ...
##  $ income        : num [1:3142] 51281 50254 32964 38678 45813 ...
##  $ income_per_cap: num [1:3142] 24974 27317 16824 18431 20532 ...
##  $ poverty       : num [1:3142] 12.9 13.4 26.7 16.8 16.7 24.6 25.4 20.5 21.6 19.2 ...
##  $ child_poverty : num [1:3142] 18.6 19.2 45.3 27.9 27.2 38.4 39.2 31.6 37.2 30.1 ...
##  $ professional  : num [1:3142] 33.2 33.1 26.8 21.5 28.5 18.8 27.5 27.3 23.3 29.3 ...
##  $ service       : num [1:3142] 17 17.7 16.1 17.9 14.1 15 16.6 17.7 14.5 16 ...
##  $ office        : num [1:3142] 24.2 27.1 23.1 17.8 23.9 19.7 21.9 24.2 26.3 19.5 ...
##  $ construction  : num [1:3142] 8.6 10.8 10.8 19 13.5 20.1 10.3 10.5 11.5 13.7 ...
##  $ production    : num [1:3142] 17.1 11.2 23.1 23.7 19.9 26.4 23.7 20.4 24.4 21.5 ...
##  $ drive         : num [1:3142] 87.5 84.7 83.8 83.2 84.9 74.9 84.5 85.3 85.1 83.9 ...
##  $ carpool       : num [1:3142] 8.8 8.8 10.9 13.5 11.2 14.9 12.4 9.4 11.9 12.1 ...
##  $ transit       : num [1:3142] 0.1 0.1 0.4 0.5 0.4 0.7 0 0.2 0.2 0.2 ...
##  $ walk          : num [1:3142] 0.5 1 1.8 0.6 0.9 5 0.8 1.2 0.3 0.6 ...
##  $ other_transp  : num [1:3142] 1.3 1.4 1.5 1.5 0.4 1.7 0.6 1.2 0.4 0.7 ...
##  $ work_at_home  : num [1:3142] 1.8 3.9 1.6 0.7 2.3 2.8 1.7 2.7 2.1 2.5 ...
##  $ mean_commute  : num [1:3142] 26.5 26.4 24.1 28.8 34.9 27.5 24.6 24.1 25.1 27.4 ...
##  $ employed      : num [1:3142] 23986 85953 8597 8294 22189 ...
##  $ private_work  : num [1:3142] 73.6 81.5 71.8 76.8 82 79.5 77.4 74.1 85.1 73.1 ...
##  $ public_work   : num [1:3142] 20.9 12.3 20.8 16.1 13.5 15.1 16.2 20.8 12.1 18.5 ...
##  $ self_employed : num [1:3142] 5.5 5.8 7.3 6.7 4.2 5.4 6.2 5 2.8 7.9 ...
##  $ family_work   : num [1:3142] 0 0.4 0.1 0.4 0.4 0 0.2 0.1 0 0.5 ...
##  $ unemployment  : num [1:3142] 7.6 7.5 17.6 8.3 7.7 18 10.9 12.3 8.9 7.9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   census_id = col_double(),
##   ..   state = col_character(),
##   ..   county = col_character(),
##   ..   total_pop = col_double(),
##   ..   men = col_double(),
##   ..   women = col_double(),
##   ..   hispanic = col_double(),
##   ..   white = col_double(),
##   ..   black = col_double(),
##   ..   native = col_double(),
##   ..   asian = col_double(),
##   ..   pacific = col_double(),
##   ..   citizen = col_double(),
##   ..   income = col_double(),
##   ..   income_per_cap = col_double(),
##   ..   poverty = col_double(),
##   ..   child_poverty = col_double(),
##   ..   professional = col_double(),
##   ..   service = col_double(),
##   ..   office = col_double(),
##   ..   construction = col_double(),
##   ..   production = col_double(),
##   ..   drive = col_double(),
##   ..   carpool = col_double(),
##   ..   transit = col_double(),
##   ..   walk = col_double(),
##   ..   other_transp = col_double(),
##   ..   work_at_home = col_double(),
##   ..   mean_commute = col_double(),
##   ..   employed = col_double(),
##   ..   private_work = col_double(),
##   ..   public_work = col_double(),
##   ..   self_employed = col_double(),
##   ..   family_work = col_double(),
##   ..   unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>

2. No data types need to be changed other than census_id. Census_id needs to be changed to a factor variable because it shouldn’t function as numeric. All of the numeric values are correctly format and state and county are both labeled as character variables. Used structure function to see what data types each column was using.

str(census)
## spc_tbl_ [3,142 × 35] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ census_id     : num [1:3142] 1001 1003 1005 1007 1009 ...
##  $ state         : chr [1:3142] "Alabama" "Alabama" "Alabama" "Alabama" ...
##  $ county        : chr [1:3142] "Autauga" "Baldwin" "Barbour" "Bibb" ...
##  $ total_pop     : num [1:3142] 55221 195121 26932 22604 57710 ...
##  $ men           : num [1:3142] 26745 95314 14497 12073 28512 ...
##  $ women         : num [1:3142] 28476 99807 12435 10531 29198 ...
##  $ hispanic      : num [1:3142] 2.6 4.5 4.6 2.2 8.6 4.4 1.2 3.5 0.4 1.5 ...
##  $ white         : num [1:3142] 75.8 83.1 46.2 74.5 87.9 22.2 53.3 73 57.3 91.7 ...
##  $ black         : num [1:3142] 18.5 9.5 46.7 21.4 1.5 70.7 43.8 20.3 40.3 4.8 ...
##  $ native        : num [1:3142] 0.4 0.6 0.2 0.4 0.3 1.2 0.1 0.2 0.2 0.6 ...
##  $ asian         : num [1:3142] 1 0.7 0.4 0.1 0.1 0.2 0.4 0.9 0.8 0.3 ...
##  $ pacific       : num [1:3142] 0 0 0 0 0 0 0 0 0 0 ...
##  $ citizen       : num [1:3142] 40725 147695 20714 17495 42345 ...
##  $ income        : num [1:3142] 51281 50254 32964 38678 45813 ...
##  $ income_per_cap: num [1:3142] 24974 27317 16824 18431 20532 ...
##  $ poverty       : num [1:3142] 12.9 13.4 26.7 16.8 16.7 24.6 25.4 20.5 21.6 19.2 ...
##  $ child_poverty : num [1:3142] 18.6 19.2 45.3 27.9 27.2 38.4 39.2 31.6 37.2 30.1 ...
##  $ professional  : num [1:3142] 33.2 33.1 26.8 21.5 28.5 18.8 27.5 27.3 23.3 29.3 ...
##  $ service       : num [1:3142] 17 17.7 16.1 17.9 14.1 15 16.6 17.7 14.5 16 ...
##  $ office        : num [1:3142] 24.2 27.1 23.1 17.8 23.9 19.7 21.9 24.2 26.3 19.5 ...
##  $ construction  : num [1:3142] 8.6 10.8 10.8 19 13.5 20.1 10.3 10.5 11.5 13.7 ...
##  $ production    : num [1:3142] 17.1 11.2 23.1 23.7 19.9 26.4 23.7 20.4 24.4 21.5 ...
##  $ drive         : num [1:3142] 87.5 84.7 83.8 83.2 84.9 74.9 84.5 85.3 85.1 83.9 ...
##  $ carpool       : num [1:3142] 8.8 8.8 10.9 13.5 11.2 14.9 12.4 9.4 11.9 12.1 ...
##  $ transit       : num [1:3142] 0.1 0.1 0.4 0.5 0.4 0.7 0 0.2 0.2 0.2 ...
##  $ walk          : num [1:3142] 0.5 1 1.8 0.6 0.9 5 0.8 1.2 0.3 0.6 ...
##  $ other_transp  : num [1:3142] 1.3 1.4 1.5 1.5 0.4 1.7 0.6 1.2 0.4 0.7 ...
##  $ work_at_home  : num [1:3142] 1.8 3.9 1.6 0.7 2.3 2.8 1.7 2.7 2.1 2.5 ...
##  $ mean_commute  : num [1:3142] 26.5 26.4 24.1 28.8 34.9 27.5 24.6 24.1 25.1 27.4 ...
##  $ employed      : num [1:3142] 23986 85953 8597 8294 22189 ...
##  $ private_work  : num [1:3142] 73.6 81.5 71.8 76.8 82 79.5 77.4 74.1 85.1 73.1 ...
##  $ public_work   : num [1:3142] 20.9 12.3 20.8 16.1 13.5 15.1 16.2 20.8 12.1 18.5 ...
##  $ self_employed : num [1:3142] 5.5 5.8 7.3 6.7 4.2 5.4 6.2 5 2.8 7.9 ...
##  $ family_work   : num [1:3142] 0 0.4 0.1 0.4 0.4 0 0.2 0.1 0 0.5 ...
##  $ unemployment  : num [1:3142] 7.6 7.5 17.6 8.3 7.7 18 10.9 12.3 8.9 7.9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   census_id = col_double(),
##   ..   state = col_character(),
##   ..   county = col_character(),
##   ..   total_pop = col_double(),
##   ..   men = col_double(),
##   ..   women = col_double(),
##   ..   hispanic = col_double(),
##   ..   white = col_double(),
##   ..   black = col_double(),
##   ..   native = col_double(),
##   ..   asian = col_double(),
##   ..   pacific = col_double(),
##   ..   citizen = col_double(),
##   ..   income = col_double(),
##   ..   income_per_cap = col_double(),
##   ..   poverty = col_double(),
##   ..   child_poverty = col_double(),
##   ..   professional = col_double(),
##   ..   service = col_double(),
##   ..   office = col_double(),
##   ..   construction = col_double(),
##   ..   production = col_double(),
##   ..   drive = col_double(),
##   ..   carpool = col_double(),
##   ..   transit = col_double(),
##   ..   walk = col_double(),
##   ..   other_transp = col_double(),
##   ..   work_at_home = col_double(),
##   ..   mean_commute = col_double(),
##   ..   employed = col_double(),
##   ..   private_work = col_double(),
##   ..   public_work = col_double(),
##   ..   self_employed = col_double(),
##   ..   family_work = col_double(),
##   ..   unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
as.factor(census$census_id)
##    [1] 1001  1003  1005  1007  1009  1011  1013  1015  1017  1019  1021  1023 
##   [13] 1025  1027  1029  1031  1033  1035  1037  1039  1041  1043  1045  1047 
##   [25] 1049  1051  1053  1055  1057  1059  1061  1063  1065  1067  1069  1071 
##   [37] 1073  1075  1077  1079  1081  1083  1085  1087  1089  1091  1093  1095 
##   [49] 1097  1099  1101  1103  1105  1107  1109  1111  1113  1115  1117  1119 
##   [61] 1121  1123  1125  1127  1129  1131  1133  2013  2016  2020  2050  2060 
##   [73] 2068  2070  2090  2100  2105  2110  2122  2130  2150  2158  2164  2170 
##   [85] 2180  2185  2188  2195  2198  2220  2230  2240  2261  2275  2282  2290 
##   [97] 4001  4003  4005  4007  4009  4011  4012  4013  4015  4017  4019  4021 
##  [109] 4023  4025  4027  5001  5003  5005  5007  5009  5011  5013  5015  5017 
##  [121] 5019  5021  5023  5025  5027  5029  5031  5033  5035  5037  5039  5041 
##  [133] 5043  5045  5047  5049  5051  5053  5055  5057  5059  5061  5063  5065 
##  [145] 5067  5069  5071  5073  5075  5077  5079  5081  5083  5085  5087  5089 
##  [157] 5091  5093  5095  5097  5099  5101  5103  5105  5107  5109  5111  5113 
##  [169] 5115  5117  5119  5121  5123  5125  5127  5129  5131  5133  5135  5137 
##  [181] 5139  5141  5143  5145  5147  5149  6001  6003  6005  6007  6009  6011 
##  [193] 6013  6015  6017  6019  6021  6023  6025  6027  6029  6031  6033  6035 
##  [205] 6037  6039  6041  6043  6045  6047  6049  6051  6053  6055  6057  6059 
##  [217] 6061  6063  6065  6067  6069  6071  6073  6075  6077  6079  6081  6083 
##  [229] 6085  6087  6089  6091  6093  6095  6097  6099  6101  6103  6105  6107 
##  [241] 6109  6111  6113  6115  8001  8003  8005  8007  8009  8011  8013  8014 
##  [253] 8015  8017  8019  8021  8023  8025  8027  8029  8031  8033  8035  8037 
##  [265] 8039  8041  8043  8045  8047  8049  8051  8053  8055  8057  8059  8061 
##  [277] 8063  8065  8067  8069  8071  8073  8075  8077  8079  8081  8083  8085 
##  [289] 8087  8089  8091  8093  8095  8097  8099  8101  8103  8105  8107  8109 
##  [301] 8111  8113  8115  8117  8119  8121  8123  8125  9001  9003  9005  9007 
##  [313] 9009  9011  9013  9015  10001 10003 10005 11001 12001 12003 12005 12007
##  [325] 12009 12011 12013 12015 12017 12019 12021 12023 12027 12029 12031 12033
##  [337] 12035 12037 12039 12041 12043 12045 12047 12049 12051 12053 12055 12057
##  [349] 12059 12061 12063 12065 12067 12069 12071 12073 12075 12077 12079 12081
##  [361] 12083 12085 12086 12087 12089 12091 12093 12095 12097 12099 12101 12103
##  [373] 12105 12107 12109 12111 12113 12115 12117 12119 12121 12123 12125 12127
##  [385] 12129 12131 12133 13001 13003 13005 13007 13009 13011 13013 13015 13017
##  [397] 13019 13021 13023 13025 13027 13029 13031 13033 13035 13037 13039 13043
##  [409] 13045 13047 13049 13051 13053 13055 13057 13059 13061 13063 13065 13067
##  [421] 13069 13071 13073 13075 13077 13079 13081 13083 13085 13087 13089 13091
##  [433] 13093 13095 13097 13099 13101 13103 13105 13107 13109 13111 13113 13115
##  [445] 13117 13119 13121 13123 13125 13127 13129 13131 13133 13135 13137 13139
##  [457] 13141 13143 13145 13147 13149 13151 13153 13155 13157 13159 13161 13163
##  [469] 13165 13167 13169 13171 13173 13175 13177 13179 13181 13183 13185 13187
##  [481] 13189 13191 13193 13195 13197 13199 13201 13205 13207 13209 13211 13213
##  [493] 13215 13217 13219 13221 13223 13225 13227 13229 13231 13233 13235 13237
##  [505] 13239 13241 13243 13245 13247 13249 13251 13253 13255 13257 13259 13261
##  [517] 13263 13265 13267 13269 13271 13273 13275 13277 13279 13281 13283 13285
##  [529] 13287 13289 13291 13293 13295 13297 13299 13301 13303 13305 13307 13309
##  [541] 13311 13313 13315 13317 13319 13321 15001 15003 15005 15007 15009 16001
##  [553] 16003 16005 16007 16009 16011 16013 16015 16017 16019 16021 16023 16025
##  [565] 16027 16029 16031 16033 16035 16037 16039 16041 16043 16045 16047 16049
##  [577] 16051 16053 16055 16057 16059 16061 16063 16065 16067 16069 16071 16073
##  [589] 16075 16077 16079 16081 16083 16085 16087 17001 17003 17005 17007 17009
##  [601] 17011 17013 17015 17017 17019 17021 17023 17025 17027 17029 17031 17033
##  [613] 17035 17037 17039 17041 17043 17045 17047 17049 17051 17053 17055 17057
##  [625] 17059 17061 17063 17065 17067 17069 17071 17073 17075 17077 17079 17081
##  [637] 17083 17085 17087 17089 17091 17093 17095 17097 17099 17101 17103 17105
##  [649] 17107 17109 17111 17113 17115 17117 17119 17121 17123 17125 17127 17129
##  [661] 17131 17133 17135 17137 17139 17141 17143 17145 17147 17149 17151 17153
##  [673] 17155 17157 17159 17161 17163 17165 17167 17169 17171 17173 17175 17177
##  [685] 17179 17181 17183 17185 17187 17189 17191 17193 17195 17197 17199 17201
##  [697] 17203 18001 18003 18005 18007 18009 18011 18013 18015 18017 18019 18021
##  [709] 18023 18025 18027 18029 18031 18033 18035 18037 18039 18041 18043 18045
##  [721] 18047 18049 18051 18053 18055 18057 18059 18061 18063 18065 18067 18069
##  [733] 18071 18073 18075 18077 18079 18081 18083 18085 18087 18089 18091 18093
##  [745] 18095 18097 18099 18101 18103 18105 18107 18109 18111 18113 18115 18117
##  [757] 18119 18121 18123 18125 18127 18129 18131 18133 18135 18137 18139 18141
##  [769] 18143 18145 18147 18149 18151 18153 18155 18157 18159 18161 18163 18165
##  [781] 18167 18169 18171 18173 18175 18177 18179 18181 18183 19001 19003 19005
##  [793] 19007 19009 19011 19013 19015 19017 19019 19021 19023 19025 19027 19029
##  [805] 19031 19033 19035 19037 19039 19041 19043 19045 19047 19049 19051 19053
##  [817] 19055 19057 19059 19061 19063 19065 19067 19069 19071 19073 19075 19077
##  [829] 19079 19081 19083 19085 19087 19089 19091 19093 19095 19097 19099 19101
##  [841] 19103 19105 19107 19109 19111 19113 19115 19117 19119 19121 19123 19125
##  [853] 19127 19129 19131 19133 19135 19137 19139 19141 19143 19145 19147 19149
##  [865] 19151 19153 19155 19157 19159 19161 19163 19165 19167 19169 19171 19173
##  [877] 19175 19177 19179 19181 19183 19185 19187 19189 19191 19193 19195 19197
##  [889] 20001 20003 20005 20007 20009 20011 20013 20015 20017 20019 20021 20023
##  [901] 20025 20027 20029 20031 20033 20035 20037 20039 20041 20043 20045 20047
##  [913] 20049 20051 20053 20055 20057 20059 20061 20063 20065 20067 20069 20071
##  [925] 20073 20075 20077 20079 20081 20083 20085 20087 20089 20091 20093 20095
##  [937] 20097 20099 20101 20103 20105 20107 20109 20111 20113 20115 20117 20119
##  [949] 20121 20123 20125 20127 20129 20131 20133 20135 20137 20139 20141 20143
##  [961] 20145 20147 20149 20151 20153 20155 20157 20159 20161 20163 20165 20167
##  [973] 20169 20171 20173 20175 20177 20179 20181 20183 20185 20187 20189 20191
##  [985] 20193 20195 20197 20199 20201 20203 20205 20207 20209 21001 21003 21005
##  [997] 21007 21009 21011 21013 21015 21017 21019 21021 21023 21025 21027 21029
## [1009] 21031 21033 21035 21037 21039 21041 21043 21045 21047 21049 21051 21053
## [1021] 21055 21057 21059 21061 21063 21065 21067 21069 21071 21073 21075 21077
## [1033] 21079 21081 21083 21085 21087 21089 21091 21093 21095 21097 21099 21101
## [1045] 21103 21105 21107 21109 21111 21113 21115 21117 21119 21121 21123 21125
## [1057] 21127 21129 21131 21133 21135 21137 21139 21141 21143 21145 21147 21149
## [1069] 21151 21153 21155 21157 21159 21161 21163 21165 21167 21169 21171 21173
## [1081] 21175 21177 21179 21181 21183 21185 21187 21189 21191 21193 21195 21197
## [1093] 21199 21201 21203 21205 21207 21209 21211 21213 21215 21217 21219 21221
## [1105] 21223 21225 21227 21229 21231 21233 21235 21237 21239 22001 22003 22005
## [1117] 22007 22009 22011 22013 22015 22017 22019 22021 22023 22025 22027 22029
## [1129] 22031 22033 22035 22037 22039 22041 22043 22045 22047 22049 22051 22053
## [1141] 22055 22057 22059 22061 22063 22065 22067 22069 22071 22073 22075 22077
## [1153] 22079 22081 22083 22085 22087 22089 22091 22093 22095 22097 22099 22101
## [1165] 22103 22105 22107 22109 22111 22113 22115 22117 22119 22121 22123 22125
## [1177] 22127 23001 23003 23005 23007 23009 23011 23013 23015 23017 23019 23021
## [1189] 23023 23025 23027 23029 23031 24001 24003 24005 24009 24011 24013 24015
## [1201] 24017 24019 24021 24023 24025 24027 24029 24031 24033 24035 24037 24039
## [1213] 24041 24043 24045 24047 24510 25001 25003 25005 25007 25009 25011 25013
## [1225] 25015 25017 25019 25021 25023 25025 25027 26001 26003 26005 26007 26009
## [1237] 26011 26013 26015 26017 26019 26021 26023 26025 26027 26029 26031 26033
## [1249] 26035 26037 26039 26041 26043 26045 26047 26049 26051 26053 26055 26057
## [1261] 26059 26061 26063 26065 26067 26069 26071 26073 26075 26077 26079 26081
## [1273] 26083 26085 26087 26089 26091 26093 26095 26097 26099 26101 26103 26105
## [1285] 26107 26109 26111 26113 26115 26117 26119 26121 26123 26125 26127 26129
## [1297] 26131 26133 26135 26137 26139 26141 26143 26145 26147 26149 26151 26153
## [1309] 26155 26157 26159 26161 26163 26165 27001 27003 27005 27007 27009 27011
## [1321] 27013 27015 27017 27019 27021 27023 27025 27027 27029 27031 27033 27035
## [1333] 27037 27039 27041 27043 27045 27047 27049 27051 27053 27055 27057 27059
## [1345] 27061 27063 27065 27067 27069 27071 27073 27075 27077 27079 27081 27083
## [1357] 27085 27087 27089 27091 27093 27095 27097 27099 27101 27103 27105 27107
## [1369] 27109 27111 27113 27115 27117 27119 27121 27123 27125 27127 27129 27131
## [1381] 27133 27135 27137 27139 27141 27143 27145 27147 27149 27151 27153 27155
## [1393] 27157 27159 27161 27163 27165 27167 27169 27171 27173 28001 28003 28005
## [1405] 28007 28009 28011 28013 28015 28017 28019 28021 28023 28025 28027 28029
## [1417] 28031 28033 28035 28037 28039 28041 28043 28045 28047 28049 28051 28053
## [1429] 28055 28057 28059 28061 28063 28065 28067 28069 28071 28073 28075 28077
## [1441] 28079 28081 28083 28085 28087 28089 28091 28093 28095 28097 28099 28101
## [1453] 28103 28105 28107 28109 28111 28113 28115 28117 28119 28121 28123 28125
## [1465] 28127 28129 28131 28133 28135 28137 28139 28141 28143 28145 28147 28149
## [1477] 28151 28153 28155 28157 28159 28161 28163 29001 29003 29005 29007 29009
## [1489] 29011 29013 29015 29017 29019 29021 29023 29025 29027 29029 29031 29033
## [1501] 29035 29037 29039 29041 29043 29045 29047 29049 29051 29053 29055 29057
## [1513] 29059 29061 29063 29065 29067 29069 29071 29073 29075 29077 29079 29081
## [1525] 29083 29085 29087 29089 29091 29093 29095 29097 29099 29101 29103 29105
## [1537] 29107 29109 29111 29113 29115 29117 29119 29121 29123 29125 29127 29129
## [1549] 29131 29133 29135 29137 29139 29141 29143 29145 29147 29149 29151 29153
## [1561] 29155 29157 29159 29161 29163 29165 29167 29169 29171 29173 29175 29177
## [1573] 29179 29181 29183 29185 29186 29187 29189 29195 29197 29199 29201 29203
## [1585] 29205 29207 29209 29211 29213 29215 29217 29219 29221 29223 29225 29227
## [1597] 29229 29510 30001 30003 30005 30007 30009 30011 30013 30015 30017 30019
## [1609] 30021 30023 30025 30027 30029 30031 30033 30035 30037 30039 30041 30043
## [1621] 30045 30047 30049 30051 30053 30055 30057 30059 30061 30063 30065 30067
## [1633] 30069 30071 30073 30075 30077 30079 30081 30083 30085 30087 30089 30091
## [1645] 30093 30095 30097 30099 30101 30103 30105 30107 30109 30111 31001 31003
## [1657] 31005 31007 31009 31011 31013 31015 31017 31019 31021 31023 31025 31027
## [1669] 31029 31031 31033 31035 31037 31039 31041 31043 31045 31047 31049 31051
## [1681] 31053 31055 31057 31059 31061 31063 31065 31067 31069 31071 31073 31075
## [1693] 31077 31079 31081 31083 31085 31087 31089 31091 31093 31095 31097 31099
## [1705] 31101 31103 31105 31107 31109 31111 31113 31115 31117 31119 31121 31123
## [1717] 31125 31127 31129 31131 31133 31135 31137 31139 31141 31143 31145 31147
## [1729] 31149 31151 31153 31155 31157 31159 31161 31163 31165 31167 31169 31171
## [1741] 31173 31175 31177 31179 31181 31183 31185 32001 32003 32005 32007 32009
## [1753] 32011 32013 32015 32017 32019 32021 32023 32027 32029 32031 32033 32510
## [1765] 33001 33003 33005 33007 33009 33011 33013 33015 33017 33019 34001 34003
## [1777] 34005 34007 34009 34011 34013 34015 34017 34019 34021 34023 34025 34027
## [1789] 34029 34031 34033 34035 34037 34039 34041 35001 35003 35005 35006 35007
## [1801] 35009 35011 35013 35015 35017 35019 35021 35023 35025 35027 35028 35029
## [1813] 35031 35033 35035 35037 35039 35041 35043 35045 35047 35049 35051 35053
## [1825] 35055 35057 35059 35061 36001 36003 36005 36007 36009 36011 36013 36015
## [1837] 36017 36019 36021 36023 36025 36027 36029 36031 36033 36035 36037 36039
## [1849] 36041 36043 36045 36047 36049 36051 36053 36055 36057 36059 36061 36063
## [1861] 36065 36067 36069 36071 36073 36075 36077 36079 36081 36083 36085 36087
## [1873] 36089 36091 36093 36095 36097 36099 36101 36103 36105 36107 36109 36111
## [1885] 36113 36115 36117 36119 36121 36123 37001 37003 37005 37007 37009 37011
## [1897] 37013 37015 37017 37019 37021 37023 37025 37027 37029 37031 37033 37035
## [1909] 37037 37039 37041 37043 37045 37047 37049 37051 37053 37055 37057 37059
## [1921] 37061 37063 37065 37067 37069 37071 37073 37075 37077 37079 37081 37083
## [1933] 37085 37087 37089 37091 37093 37095 37097 37099 37101 37103 37105 37107
## [1945] 37109 37111 37113 37115 37117 37119 37121 37123 37125 37127 37129 37131
## [1957] 37133 37135 37137 37139 37141 37143 37145 37147 37149 37151 37153 37155
## [1969] 37157 37159 37161 37163 37165 37167 37169 37171 37173 37175 37177 37179
## [1981] 37181 37183 37185 37187 37189 37191 37193 37195 37197 37199 38001 38003
## [1993] 38005 38007 38009 38011 38013 38015 38017 38019 38021 38023 38025 38027
## [2005] 38029 38031 38033 38035 38037 38039 38041 38043 38045 38047 38049 38051
## [2017] 38053 38055 38057 38059 38061 38063 38065 38067 38069 38071 38073 38075
## [2029] 38077 38079 38081 38083 38085 38087 38089 38091 38093 38095 38097 38099
## [2041] 38101 38103 38105 39001 39003 39005 39007 39009 39011 39013 39015 39017
## [2053] 39019 39021 39023 39025 39027 39029 39031 39033 39035 39037 39039 39041
## [2065] 39043 39045 39047 39049 39051 39053 39055 39057 39059 39061 39063 39065
## [2077] 39067 39069 39071 39073 39075 39077 39079 39081 39083 39085 39087 39089
## [2089] 39091 39093 39095 39097 39099 39101 39103 39105 39107 39109 39111 39113
## [2101] 39115 39117 39119 39121 39123 39125 39127 39129 39131 39133 39135 39137
## [2113] 39139 39141 39143 39145 39147 39149 39151 39153 39155 39157 39159 39161
## [2125] 39163 39165 39167 39169 39171 39173 39175 40001 40003 40005 40007 40009
## [2137] 40011 40013 40015 40017 40019 40021 40023 40025 40027 40029 40031 40033
## [2149] 40035 40037 40039 40041 40043 40045 40047 40049 40051 40053 40055 40057
## [2161] 40059 40061 40063 40065 40067 40069 40071 40073 40075 40077 40079 40081
## [2173] 40083 40085 40087 40089 40091 40093 40095 40097 40099 40101 40103 40105
## [2185] 40107 40109 40111 40113 40115 40117 40119 40121 40123 40125 40127 40129
## [2197] 40131 40133 40135 40137 40139 40141 40143 40145 40147 40149 40151 40153
## [2209] 41001 41003 41005 41007 41009 41011 41013 41015 41017 41019 41021 41023
## [2221] 41025 41027 41029 41031 41033 41035 41037 41039 41041 41043 41045 41047
## [2233] 41049 41051 41053 41055 41057 41059 41061 41063 41065 41067 41069 41071
## [2245] 42001 42003 42005 42007 42009 42011 42013 42015 42017 42019 42021 42023
## [2257] 42025 42027 42029 42031 42033 42035 42037 42039 42041 42043 42045 42047
## [2269] 42049 42051 42053 42055 42057 42059 42061 42063 42065 42067 42069 42071
## [2281] 42073 42075 42077 42079 42081 42083 42085 42087 42089 42091 42093 42095
## [2293] 42097 42099 42101 42103 42105 42107 42109 42111 42113 42115 42117 42119
## [2305] 42121 42123 42125 42127 42129 42131 42133 44001 44003 44005 44007 44009
## [2317] 45001 45003 45005 45007 45009 45011 45013 45015 45017 45019 45021 45023
## [2329] 45025 45027 45029 45031 45033 45035 45037 45039 45041 45043 45045 45047
## [2341] 45049 45051 45053 45055 45057 45059 45061 45063 45065 45067 45069 45071
## [2353] 45073 45075 45077 45079 45081 45083 45085 45087 45089 45091 46003 46005
## [2365] 46007 46009 46011 46013 46015 46017 46019 46021 46023 46025 46027 46029
## [2377] 46031 46033 46035 46037 46039 46041 46043 46045 46047 46049 46051 46053
## [2389] 46055 46057 46059 46061 46063 46065 46067 46069 46071 46073 46075 46077
## [2401] 46079 46081 46083 46085 46087 46089 46091 46093 46095 46097 46099 46101
## [2413] 46102 46103 46105 46107 46109 46111 46115 46117 46119 46121 46123 46125
## [2425] 46127 46129 46135 46137 47001 47003 47005 47007 47009 47011 47013 47015
## [2437] 47017 47019 47021 47023 47025 47027 47029 47031 47033 47035 47037 47039
## [2449] 47041 47043 47045 47047 47049 47051 47053 47055 47057 47059 47061 47063
## [2461] 47065 47067 47069 47071 47073 47075 47077 47079 47081 47083 47085 47087
## [2473] 47089 47091 47093 47095 47097 47099 47101 47103 47105 47107 47109 47111
## [2485] 47113 47115 47117 47119 47121 47123 47125 47127 47129 47131 47133 47135
## [2497] 47137 47139 47141 47143 47145 47147 47149 47151 47153 47155 47157 47159
## [2509] 47161 47163 47165 47167 47169 47171 47173 47175 47177 47179 47181 47183
## [2521] 47185 47187 47189 48001 48003 48005 48007 48009 48011 48013 48015 48017
## [2533] 48019 48021 48023 48025 48027 48029 48031 48033 48035 48037 48039 48041
## [2545] 48043 48045 48047 48049 48051 48053 48055 48057 48059 48061 48063 48065
## [2557] 48067 48069 48071 48073 48075 48077 48079 48081 48083 48085 48087 48089
## [2569] 48091 48093 48095 48097 48099 48101 48103 48105 48107 48109 48111 48113
## [2581] 48115 48117 48119 48121 48123 48125 48127 48129 48131 48133 48135 48137
## [2593] 48139 48141 48143 48145 48147 48149 48151 48153 48155 48157 48159 48161
## [2605] 48163 48165 48167 48169 48171 48173 48175 48177 48179 48181 48183 48185
## [2617] 48187 48189 48191 48193 48195 48197 48199 48201 48203 48205 48207 48209
## [2629] 48211 48213 48215 48217 48219 48221 48223 48225 48227 48229 48231 48233
## [2641] 48235 48237 48239 48241 48243 48245 48247 48249 48251 48253 48255 48257
## [2653] 48259 48261 48263 48265 48267 48269 48271 48273 48275 48277 48279 48281
## [2665] 48283 48285 48287 48289 48291 48293 48295 48297 48299 48301 48303 48305
## [2677] 48307 48309 48311 48313 48315 48317 48319 48321 48323 48325 48327 48329
## [2689] 48331 48333 48335 48337 48339 48341 48343 48345 48347 48349 48351 48353
## [2701] 48355 48357 48359 48361 48363 48365 48367 48369 48371 48373 48375 48377
## [2713] 48379 48381 48383 48385 48387 48389 48391 48393 48395 48397 48399 48401
## [2725] 48403 48405 48407 48409 48411 48413 48415 48417 48419 48421 48423 48425
## [2737] 48427 48429 48431 48433 48435 48437 48439 48441 48443 48445 48447 48449
## [2749] 48451 48453 48455 48457 48459 48461 48463 48465 48467 48469 48471 48473
## [2761] 48475 48477 48479 48481 48483 48485 48487 48489 48491 48493 48495 48497
## [2773] 48499 48501 48503 48505 48507 49001 49003 49005 49007 49009 49011 49013
## [2785] 49015 49017 49019 49021 49023 49025 49027 49029 49031 49033 49035 49037
## [2797] 49039 49041 49043 49045 49047 49049 49051 49053 49055 49057 50001 50003
## [2809] 50005 50007 50009 50011 50013 50015 50017 50019 50021 50023 50025 50027
## [2821] 51001 51003 51005 51007 51009 51011 51013 51015 51017 51019 51021 51023
## [2833] 51025 51027 51029 51031 51033 51035 51036 51037 51041 51043 51045 51047
## [2845] 51049 51051 51053 51057 51059 51061 51063 51065 51067 51069 51071 51073
## [2857] 51075 51077 51079 51081 51083 51085 51087 51089 51091 51093 51095 51097
## [2869] 51099 51101 51103 51105 51107 51109 51111 51113 51115 51117 51119 51121
## [2881] 51125 51127 51131 51133 51135 51137 51139 51141 51143 51145 51147 51149
## [2893] 51153 51155 51157 51159 51161 51163 51165 51167 51169 51171 51173 51175
## [2905] 51177 51179 51181 51183 51185 51187 51191 51193 51195 51197 51199 51510
## [2917] 51520 51530 51540 51550 51570 51580 51590 51595 51600 51610 51620 51630
## [2929] 51640 51650 51660 51670 51678 51680 51683 51685 51690 51700 51710 51720
## [2941] 51730 51735 51740 51750 51760 51770 51775 51790 51800 51810 51820 51830
## [2953] 51840 53001 53003 53005 53007 53009 53011 53013 53015 53017 53019 53021
## [2965] 53023 53025 53027 53029 53031 53033 53035 53037 53039 53041 53043 53045
## [2977] 53047 53049 53051 53053 53055 53057 53059 53061 53063 53065 53067 53069
## [2989] 53071 53073 53075 53077 54001 54003 54005 54007 54009 54011 54013 54015
## [3001] 54017 54019 54021 54023 54025 54027 54029 54031 54033 54035 54037 54039
## [3013] 54041 54043 54045 54047 54049 54051 54053 54055 54057 54059 54061 54063
## [3025] 54065 54067 54069 54071 54073 54075 54077 54079 54081 54083 54085 54087
## [3037] 54089 54091 54093 54095 54097 54099 54101 54103 54105 54107 54109 55001
## [3049] 55003 55005 55007 55009 55011 55013 55015 55017 55019 55021 55023 55025
## [3061] 55027 55029 55031 55033 55035 55037 55039 55041 55043 55045 55047 55049
## [3073] 55051 55053 55055 55057 55059 55061 55063 55065 55067 55069 55071 55073
## [3085] 55075 55077 55078 55079 55081 55083 55085 55087 55089 55091 55093 55095
## [3097] 55097 55099 55101 55103 55105 55107 55109 55111 55113 55115 55117 55119
## [3109] 55121 55123 55125 55127 55129 55131 55133 55135 55137 55139 55141 56001
## [3121] 56003 56005 56007 56009 56011 56013 56015 56017 56019 56021 56023 56025
## [3133] 56027 56029 56031 56033 56035 56037 56039 56041 56043 56045
## 3142 Levels: 1001 1003 1005 1007 1009 1011 1013 1015 1017 1019 1021 1023 ... 56045
colSums(is.na(census))
##      census_id          state         county      total_pop            men 
##              0              0              0              0              0 
##          women       hispanic          white          black         native 
##              0              0              0              0              0 
##          asian        pacific        citizen         income income_per_cap 
##              0              0              0              1              0 
##        poverty  child_poverty   professional        service         office 
##              0              1              0              0              0 
##   construction     production          drive        carpool        transit 
##              0              0              0              0              0 
##           walk   other_transp   work_at_home   mean_commute       employed 
##              0              0              0              0              0 
##   private_work    public_work  self_employed    family_work   unemployment 
##              0              0              0              0              0
census[is.na(census)] <- 0
#glimpse(census)
## cha

3. There are na values in the income and child poverty variables. There were only two NA values so it shouldn’t make a big difference in such a large dataset. Used the col sums and is.na to find any NA’s in the dataset and cleaned them out.

colSums(is.na(census))
##      census_id          state         county      total_pop            men 
##              0              0              0              0              0 
##          women       hispanic          white          black         native 
##              0              0              0              0              0 
##          asian        pacific        citizen         income income_per_cap 
##              0              0              0              0              0 
##        poverty  child_poverty   professional        service         office 
##              0              0              0              0              0 
##   construction     production          drive        carpool        transit 
##              0              0              0              0              0 
##           walk   other_transp   work_at_home   mean_commute       employed 
##              0              0              0              0              0 
##   private_work    public_work  self_employed    family_work   unemployment 
##              0              0              0              0              0
census[is.na(census)] <- 0
## cha

4. The employed variable needs to be changed to a percent. I am putting a decimal point after the first two digits to format it correctly. I saw this issue using the summary variable. I divided

summary(census)
##    census_id        state              county            total_pop       
##  Min.   : 1001   Length:3142        Length:3142        Min.   :      85  
##  1st Qu.:18178   Class :character   Class :character   1st Qu.:   11028  
##  Median :29176   Mode  :character   Mode  :character   Median :   25768  
##  Mean   :30384                                         Mean   :  100737  
##  3rd Qu.:45081                                         3rd Qu.:   67552  
##  Max.   :56045                                         Max.   :10038388  
##       men              women            hispanic          white      
##  Min.   :     42   Min.   :     43   Min.   : 0.000   Min.   : 0.90  
##  1st Qu.:   5546   1st Qu.:   5466   1st Qu.: 1.900   1st Qu.:65.60  
##  Median :  12826   Median :  12907   Median : 3.700   Median :84.60  
##  Mean   :  49565   Mean   :  51172   Mean   : 8.826   Mean   :77.28  
##  3rd Qu.:  33319   3rd Qu.:  34122   3rd Qu.: 9.000   3rd Qu.:93.30  
##  Max.   :4945351   Max.   :5093037   Max.   :98.700   Max.   :99.80  
##      black            native           asian           pacific        
##  Min.   : 0.000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.00000  
##  1st Qu.: 0.600   1st Qu.: 0.100   1st Qu.: 0.200   1st Qu.: 0.00000  
##  Median : 2.100   Median : 0.300   Median : 0.500   Median : 0.00000  
##  Mean   : 8.879   Mean   : 1.766   Mean   : 1.258   Mean   : 0.08475  
##  3rd Qu.:10.175   3rd Qu.: 0.600   3rd Qu.: 1.200   3rd Qu.: 0.00000  
##  Max.   :85.900   Max.   :92.100   Max.   :41.600   Max.   :35.30000  
##     citizen            income       income_per_cap     poverty    
##  Min.   :     80   Min.   :     0   Min.   : 8292   Min.   : 1.4  
##  1st Qu.:   8254   1st Qu.: 38825   1st Qu.:20471   1st Qu.:12.0  
##  Median :  19434   Median : 45095   Median :23577   Median :16.0  
##  Mean   :  70804   Mean   : 46815   Mean   :24338   Mean   :16.7  
##  3rd Qu.:  50728   3rd Qu.: 52249   3rd Qu.:27138   3rd Qu.:20.3  
##  Max.   :6046749   Max.   :123453   Max.   :65600   Max.   :53.3  
##  child_poverty    professional      service          office     
##  Min.   : 0.00   Min.   :13.50   Min.   : 5.00   Min.   : 4.10  
##  1st Qu.:16.10   1st Qu.:26.70   1st Qu.:15.90   1st Qu.:20.20  
##  Median :22.50   Median :30.00   Median :18.00   Median :22.40  
##  Mean   :23.28   Mean   :31.04   Mean   :18.26   Mean   :22.13  
##  3rd Qu.:29.48   3rd Qu.:34.40   3rd Qu.:20.20   3rd Qu.:24.30  
##  Max.   :72.30   Max.   :74.00   Max.   :36.60   Max.   :35.40  
##   construction     production        drive          carpool     
##  Min.   : 1.70   Min.   : 0.00   Min.   : 5.20   Min.   : 0.00  
##  1st Qu.: 9.80   1st Qu.:11.53   1st Qu.:76.60   1st Qu.: 8.50  
##  Median :12.20   Median :15.40   Median :80.60   Median : 9.90  
##  Mean   :12.74   Mean   :15.82   Mean   :79.08   Mean   :10.33  
##  3rd Qu.:15.00   3rd Qu.:19.40   3rd Qu.:83.60   3rd Qu.:11.88  
##  Max.   :40.30   Max.   :55.60   Max.   :94.60   Max.   :29.90  
##     transit             walk         other_transp     work_at_home   
##  Min.   : 0.0000   Min.   : 0.000   Min.   : 0.000   Min.   : 0.000  
##  1st Qu.: 0.1000   1st Qu.: 1.400   1st Qu.: 0.900   1st Qu.: 2.800  
##  Median : 0.4000   Median : 2.400   Median : 1.300   Median : 4.000  
##  Mean   : 0.9675   Mean   : 3.307   Mean   : 1.614   Mean   : 4.697  
##  3rd Qu.: 0.8000   3rd Qu.: 4.000   3rd Qu.: 1.900   3rd Qu.: 5.700  
##  Max.   :61.7000   Max.   :71.200   Max.   :39.100   Max.   :37.200  
##   mean_commute      employed        private_work    public_work   
##  Min.   : 4.90   Min.   :     62   Min.   :25.00   Min.   : 5.80  
##  1st Qu.:19.30   1st Qu.:   4524   1st Qu.:70.90   1st Qu.:13.10  
##  Median :22.90   Median :  10644   Median :75.80   Median :16.10  
##  Mean   :23.15   Mean   :  46387   Mean   :74.44   Mean   :17.35  
##  3rd Qu.:26.60   3rd Qu.:  29254   3rd Qu.:79.80   3rd Qu.:20.10  
##  Max.   :44.00   Max.   :4635465   Max.   :88.30   Max.   :66.20  
##  self_employed     family_work      unemployment   
##  Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 5.400   1st Qu.:0.1000   1st Qu.: 5.500  
##  Median : 6.900   Median :0.2000   Median : 7.500  
##  Mean   : 7.921   Mean   :0.2915   Mean   : 7.815  
##  3rd Qu.: 9.400   3rd Qu.:0.3000   3rd Qu.: 9.700  
##  Max.   :36.600   Max.   :9.8000   Max.   :29.400
str(census)
## spc_tbl_ [3,142 × 35] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
##  $ census_id     : num [1:3142] 1001 1003 1005 1007 1009 ...
##  $ state         : chr [1:3142] "Alabama" "Alabama" "Alabama" "Alabama" ...
##  $ county        : chr [1:3142] "Autauga" "Baldwin" "Barbour" "Bibb" ...
##  $ total_pop     : num [1:3142] 55221 195121 26932 22604 57710 ...
##  $ men           : num [1:3142] 26745 95314 14497 12073 28512 ...
##  $ women         : num [1:3142] 28476 99807 12435 10531 29198 ...
##  $ hispanic      : num [1:3142] 2.6 4.5 4.6 2.2 8.6 4.4 1.2 3.5 0.4 1.5 ...
##  $ white         : num [1:3142] 75.8 83.1 46.2 74.5 87.9 22.2 53.3 73 57.3 91.7 ...
##  $ black         : num [1:3142] 18.5 9.5 46.7 21.4 1.5 70.7 43.8 20.3 40.3 4.8 ...
##  $ native        : num [1:3142] 0.4 0.6 0.2 0.4 0.3 1.2 0.1 0.2 0.2 0.6 ...
##  $ asian         : num [1:3142] 1 0.7 0.4 0.1 0.1 0.2 0.4 0.9 0.8 0.3 ...
##  $ pacific       : num [1:3142] 0 0 0 0 0 0 0 0 0 0 ...
##  $ citizen       : num [1:3142] 40725 147695 20714 17495 42345 ...
##  $ income        : num [1:3142] 51281 50254 32964 38678 45813 ...
##  $ income_per_cap: num [1:3142] 24974 27317 16824 18431 20532 ...
##  $ poverty       : num [1:3142] 12.9 13.4 26.7 16.8 16.7 24.6 25.4 20.5 21.6 19.2 ...
##  $ child_poverty : num [1:3142] 18.6 19.2 45.3 27.9 27.2 38.4 39.2 31.6 37.2 30.1 ...
##  $ professional  : num [1:3142] 33.2 33.1 26.8 21.5 28.5 18.8 27.5 27.3 23.3 29.3 ...
##  $ service       : num [1:3142] 17 17.7 16.1 17.9 14.1 15 16.6 17.7 14.5 16 ...
##  $ office        : num [1:3142] 24.2 27.1 23.1 17.8 23.9 19.7 21.9 24.2 26.3 19.5 ...
##  $ construction  : num [1:3142] 8.6 10.8 10.8 19 13.5 20.1 10.3 10.5 11.5 13.7 ...
##  $ production    : num [1:3142] 17.1 11.2 23.1 23.7 19.9 26.4 23.7 20.4 24.4 21.5 ...
##  $ drive         : num [1:3142] 87.5 84.7 83.8 83.2 84.9 74.9 84.5 85.3 85.1 83.9 ...
##  $ carpool       : num [1:3142] 8.8 8.8 10.9 13.5 11.2 14.9 12.4 9.4 11.9 12.1 ...
##  $ transit       : num [1:3142] 0.1 0.1 0.4 0.5 0.4 0.7 0 0.2 0.2 0.2 ...
##  $ walk          : num [1:3142] 0.5 1 1.8 0.6 0.9 5 0.8 1.2 0.3 0.6 ...
##  $ other_transp  : num [1:3142] 1.3 1.4 1.5 1.5 0.4 1.7 0.6 1.2 0.4 0.7 ...
##  $ work_at_home  : num [1:3142] 1.8 3.9 1.6 0.7 2.3 2.8 1.7 2.7 2.1 2.5 ...
##  $ mean_commute  : num [1:3142] 26.5 26.4 24.1 28.8 34.9 27.5 24.6 24.1 25.1 27.4 ...
##  $ employed      : num [1:3142] 23986 85953 8597 8294 22189 ...
##  $ private_work  : num [1:3142] 73.6 81.5 71.8 76.8 82 79.5 77.4 74.1 85.1 73.1 ...
##  $ public_work   : num [1:3142] 20.9 12.3 20.8 16.1 13.5 15.1 16.2 20.8 12.1 18.5 ...
##  $ self_employed : num [1:3142] 5.5 5.8 7.3 6.7 4.2 5.4 6.2 5 2.8 7.9 ...
##  $ family_work   : num [1:3142] 0 0.4 0.1 0.4 0.4 0 0.2 0.1 0 0.5 ...
##  $ unemployment  : num [1:3142] 7.6 7.5 17.6 8.3 7.7 18 10.9 12.3 8.9 7.9 ...
##  - attr(*, "spec")=
##   .. cols(
##   ..   census_id = col_double(),
##   ..   state = col_character(),
##   ..   county = col_character(),
##   ..   total_pop = col_double(),
##   ..   men = col_double(),
##   ..   women = col_double(),
##   ..   hispanic = col_double(),
##   ..   white = col_double(),
##   ..   black = col_double(),
##   ..   native = col_double(),
##   ..   asian = col_double(),
##   ..   pacific = col_double(),
##   ..   citizen = col_double(),
##   ..   income = col_double(),
##   ..   income_per_cap = col_double(),
##   ..   poverty = col_double(),
##   ..   child_poverty = col_double(),
##   ..   professional = col_double(),
##   ..   service = col_double(),
##   ..   office = col_double(),
##   ..   construction = col_double(),
##   ..   production = col_double(),
##   ..   drive = col_double(),
##   ..   carpool = col_double(),
##   ..   transit = col_double(),
##   ..   walk = col_double(),
##   ..   other_transp = col_double(),
##   ..   work_at_home = col_double(),
##   ..   mean_commute = col_double(),
##   ..   employed = col_double(),
##   ..   private_work = col_double(),
##   ..   public_work = col_double(),
##   ..   self_employed = col_double(),
##   ..   family_work = col_double(),
##   ..   unemployment = col_double()
##   .. )
##  - attr(*, "problems")=<externalptr>
unique(census$Employed)
## Warning: Unknown or uninitialised column: `Employed`.
## NULL
census$Employed / 100 
## Warning: Unknown or uninitialised column: `Employed`.
## numeric(0)

5. 1985. Used the >, == functions to solve this. Then the sum function to add all of the situations where the situation was true.

census$is_higher <- census$men > census$women

census$is_womenhigh <- census$women > census$men

census$is_equal <- census$women == census$men

print(census$is_higher)
##    [1] FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [73]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
##   [85]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##   [97] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
##  [109] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [145] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [193] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [205] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [217] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
##  [229]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
##  [241]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [253]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [265]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [277]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [289] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
##  [301]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [325] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
##  [337] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
##  [349]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
##  [361] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
##  [385]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
##  [409] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [433]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [469] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [517] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
##  [541] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [553]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [565] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
##  [577]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
##  [589]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
##  [601] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [613]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [625] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE
##  [637] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
##  [649]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [673]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [709] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [721] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
##  [745]  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
##  [757]  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [781]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
##  [793] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
##  [805] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [817] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [841] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
##  [853]  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
##  [877] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
##  [901] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
##  [913] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
##  [925] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
##  [937] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
##  [949] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
##  [961]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
##  [973] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
##  [985] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1009]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1021]  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [1033] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1045] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1057] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1069] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [1081]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1093] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
## [1105] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1117] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [1129] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [1141] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1153] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1165] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [1177]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1189] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1201] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [1213] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1225] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [1237]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE
## [1249] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
## [1261] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1273]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE
## [1285]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [1297]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1309] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
## [1321]  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [1333] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
## [1345]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [1357] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
## [1369] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [1381] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
## [1393]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE
## [1405] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1417] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1429]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1441]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1453] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1465] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1477] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [1489] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE
## [1501] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [1513]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [1525] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1537] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [1549] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [1561] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1573]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1585] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1597] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [1609]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [1621]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
## [1633]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
## [1645]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [1657] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [1669] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [1681] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
## [1693] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1705] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [1717] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [1729] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [1741] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
## [1753] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [1765] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1777] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1789] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
## [1801]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [1813] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [1825] FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
## [1837] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [1849]  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1861] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1873]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [1885] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
## [1897] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [1909] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [1921] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
## [1933] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [1945] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1957]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [1969] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1981] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [1993]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [2005]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [2017]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
## [2029]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2041]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [2053] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2065] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2077] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2089] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [2101] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
## [2113]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2125]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
## [2137]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [2149]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [2161]  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [2173] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2185]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [2197] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [2209]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2221]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
## [2233]  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2245] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2257] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2269] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [2281] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2293]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [2305] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2317] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2329] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [2341]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
## [2353] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [2365] FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
## [2377]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
## [2389]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2401]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [2413] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
## [2425]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2437] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2449] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2461] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [2473] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [2485] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [2497] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2509]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [2521] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [2533] FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [2545] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [2557] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
## [2569] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2581]  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE
## [2593] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
## [2605]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [2617] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
## [2629] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [2641]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE
## [2653] FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [2665]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE
## [2677] FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [2689] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2701] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [2713]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2725] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
## [2737] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
## [2749] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [2761] FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [2773] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
## [2785]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
## [2797]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [2809] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
## [2821] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
## [2833]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2845]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
## [2857] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
## [2869]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
## [2881] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
## [2893] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [2905] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE
## [2917] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## [2929] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
## [2941] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [2953] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
## [2965] FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
## [2977]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
## [2989]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
## [3001]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE
## [3013] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [3025] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
## [3037] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE
## [3049] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
## [3061]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
## [3073] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
## [3085]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
## [3097]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
## [3109]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
## [3121]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
## [3133] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
women_true <- sum(census$is_womenhigh, na.rm = TRUE)

6. 3138. Used the sum function to see all the places unemployment was less than 10%.

sum(census$unemployment < 0.1)
## [1] 4

7. Arranged the top 10 data in descending order by mean_commute using the head function and then selected the 4 variables I wanted to see.

census %>%
  arrange(desc(mean_commute)) %>%
  head(10) %>%
    select(census_id, county, state, mean_commute)
## # A tibble: 10 × 4
##    census_id county       state         mean_commute
##        <dbl> <chr>        <chr>                <dbl>
##  1     42103 Pike         Pennsylvania          44  
##  2     36005 Bronx        New York              43  
##  3     24017 Charles      Maryland              42.8
##  4     51187 Warren       Virginia              42.7
##  5     36081 Queens       New York              42.6
##  6     36085 Richmond     New York              42.6
##  7     51193 Westmoreland Virginia              42.5
##  8      8093 Park         Colorado              42.4
##  9     36047 Kings        New York              41.7
## 10     54015 Clay         West Virginia         41.4

8.

Arranged the top 10 data in descending order by percent of women in total population using the head function and then selected the county variable to display.

percent_women <- census$women / census$total_pop

census %>%
arrange(desc(percent_women)) %>%
  head(10) %>%
    select(county)  
## # A tibble: 10 × 1
##    county       
##    <chr>        
##  1 Norton city  
##  2 Pulaski      
##  3 Sumter       
##  4 Sharkey      
##  5 Franklin city
##  6 Highland     
##  7 Edwards      
##  8 Staunton city
##  9 De Baca      
## 10 Livingston

9a. Added together all of the race variables and then arranged them by the top 10 highest total percentage and showed the top 10 counties.

race_all <- census$hispanic + census$white + census$black + census$native + census$asian + census$pacific

census %>%
  arrange(desc(race_all)) %>%
  head(10) %>%
    select(county)
## # A tibble: 10 × 1
##    county   
##    <chr>    
##  1 Gosper   
##  2 Hooker   
##  3 Bailey   
##  4 Edwards  
##  5 Nance    
##  6 Claiborne
##  7 Duval    
##  8 Kenedy   
##  9 Kent     
## 10 Presidio

#9b.

str(census)

avg_state <- mean(group_by(race_all)

9c.

No there aren’t any counties that to over 100. I created the over variable to find the count but it was equal to zero. I still checked using the sum and na.rm variables.

Over <- census$race_all > 100
## Warning: Unknown or uninitialised column: `race_all`.
over_all <- sum(census$Over, na.rm = TRUE)
## Warning: Unknown or uninitialised column: `Over`.

9d. There are none that add up to 100%. I created the Exact variable to find the count but it was equal to zero. I still checked using the sum and na.rm variables.

No there aren’t any counties that to over 100

Exact <- census$race_all == 100
## Warning: Unknown or uninitialised column: `race_all`.
Exact_all <- sum(census$Exact, na.rm = TRUE)
## Warning: Unknown or uninitialised column: `Exact`.